Suppr超能文献

一种用于连续非线性相互作用稳健假设检验的交叉验证集成方法:应用于营养-环境研究

A Cross-validated Ensemble Approach to Robust Hypothesis Testing of Continuous Nonlinear Interactions: Application to Nutrition-Environment Studies.

作者信息

Liu Jeremiah Zhe, Deng Wenying, Lee Jane, Lin Pi-I Debby, Valeri Linda, Christiani David C, Bellinger David C, Wright Robert O, Mazumdar Maitreyi M, Coull Brent A

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

J Am Stat Assoc. 2022;117(538):561-573. doi: 10.1080/01621459.2021.1962889. Epub 2021 Sep 20.

Abstract

Gene-environment and nutrition-environment studies often involve testing of high-dimensional interactions between two sets of variables, each having potentially complex nonlinear main effects on an outcome. Construction of a valid and powerful hypothesis test for such an interaction is challenging, due to the difficulty in constructing an efficient and unbiased estimator for the complex, nonlinear main effects. In this work we address this problem by proposing a Cross-validated Ensemble of Kernels (CVEK) that learns the space of appropriate functions for the main effects using a cross-validated ensemble approach. With a carefully chosen library of base kernels, CVEK flexibly estimates the form of the main-effect functions from the data, and encourages test power by guarding against over-fitting under the alternative. The method is motivated by a study on the interaction between metal exposures and maternal nutrition on children's neurodevelopment in rural Bangladesh. The proposed tests identified evidence of an interaction between minerals and vitamins intake and arsenic and manganese exposures. Results suggest that the detrimental effects of these metals are most pronounced at low intake levels of the nutrients, suggesting nutritional interventions in pregnant women could mitigate the adverse impacts of metal exposures on children's neurodevelopment.

摘要

基因-环境和营养-环境研究通常涉及对两组变量之间的高维相互作用进行测试,每组变量对一个结果都可能具有潜在复杂的非线性主效应。由于难以构建针对复杂非线性主效应的高效且无偏估计量,因此为这种相互作用构建有效且强大的假设检验具有挑战性。在这项工作中,我们通过提出一种交叉验证核集成(CVEK)方法来解决这个问题,该方法使用交叉验证集成方法来学习主效应的合适函数空间。通过精心选择的基核库,CVEK可以灵活地从数据中估计主效应函数的形式,并通过防止在备择假设下的过度拟合来提高检验效能。该方法的灵感来自于对孟加拉国农村地区金属暴露与孕产妇营养对儿童神经发育相互作用的一项研究。所提出的检验方法发现了矿物质和维生素摄入量与砷和锰暴露之间存在相互作用的证据。结果表明,这些金属的有害影响在营养素摄入量较低时最为明显,这表明对孕妇进行营养干预可以减轻金属暴露对儿童神经发育的不利影响。

相似文献

6
A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.
Genet Epidemiol. 2015 Sep;39(6):456-68. doi: 10.1002/gepi.21909. Epub 2015 Jul 3.
7
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9
Maternal Blood Manganese and Early Neurodevelopment: The Mothers and Children's Environmental Health (MOCEH) Study.
Environ Health Perspect. 2015 Jul;123(7):717-22. doi: 10.1289/ehp.1307865. Epub 2015 Mar 3.
10
Learning With Kernels: A Local Rademacher Complexity-Based Analysis With Application to Graph Kernels.
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4660-4671. doi: 10.1109/TNNLS.2017.2771830. Epub 2017 Dec 4.

引用本文的文献

1
LOW-RANK LONGITUDINAL FACTOR REGRESSION WITH APPLICATION TO CHEMICAL MIXTURES.
Ann Appl Stat. 2025 Mar;19(1):769-797. doi: 10.1214/24-aoas1988. Epub 2025 Mar 17.
2
A review of common statistical methods for dealing with multiple pollutant mixtures and multiple exposures.
Front Public Health. 2024 May 9;12:1377685. doi: 10.3389/fpubh.2024.1377685. eCollection 2024.
3
Association between exposure to a mixture of organochlorine pesticides and hyperuricemia in U.S. adults: A comparison of four statistical models.
Eco Environ Health. 2024 Mar 5;3(2):192-201. doi: 10.1016/j.eehl.2024.02.005. eCollection 2024 Jun.
4
Prenatal metal exposures and childhood gut microbial signatures are associated with depression score in late childhood.
Sci Total Environ. 2024 Mar 15;916:170361. doi: 10.1016/j.scitotenv.2024.170361. Epub 2024 Jan 24.

本文引用的文献

1
Set-Based Tests for the Gene-Environment Interaction in Longitudinal Studies.
J Am Stat Assoc. 2017;112(519):966-978. doi: 10.1080/01621459.2016.1252266. Epub 2016 Dec 16.
2
The Arsenic Contamination of Drinking and Groundwaters in Bangladesh: Featuring Biogeochemical Aspects and Implications on Public Health.
Arch Environ Contam Toxicol. 2018 Jul;75(1):1-7. doi: 10.1007/s00244-018-0511-4. Epub 2018 Mar 8.
5
6
Test for rare variants by environment interactions in sequencing association studies.
Biometrics. 2016 Mar;72(1):156-64. doi: 10.1111/biom.12368. Epub 2015 Jul 30.
7
Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test.
Am J Hum Genet. 2015 May 7;96(5):797-807. doi: 10.1016/j.ajhg.2015.04.003.
8
Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits.
Genet Epidemiol. 2015 Jul;39(5):366-75. doi: 10.1002/gepi.21901. Epub 2015 Apr 17.
9
A kernel machine method for detecting effects of interaction between multidimensional variable sets: an imaging genetics application.
Neuroimage. 2015 Apr 1;109:505-514. doi: 10.1016/j.neuroimage.2015.01.029. Epub 2015 Jan 16.
10
Contaminated turmeric is a potential source of lead exposure for children in rural Bangladesh.
J Environ Public Health. 2014;2014:730636. doi: 10.1155/2014/730636. Epub 2014 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验