Suppr超能文献

一种用于研究伤害性背根神经节和背角神经元之间突触形成的体外检测系统。

An in vitro assay system for studying synapse formation between nociceptive dorsal root ganglion and dorsal horn neurons.

机构信息

Program in Neurobiology and Behavior, Department of Neuroscience, Columbia University, New York, NY 10032, USA.

出版信息

J Neurosci Methods. 2010 Jun 15;189(2):197-204. doi: 10.1016/j.jneumeth.2010.04.002. Epub 2010 Apr 10.

Abstract

Synapses between nociceptive dorsal root ganglion (DRG) neurons and spinal cord dorsal horn neurons represent the first loci for transmission of painful stimuli. Our knowledge of the molecular organization and development of these synapses is sparse due, partly, to a lack of a reliable model system that reconstitutes synaptogenesis between these two neuronal populations. To address this issue, we have established an in vitro assay system consisting of separately purified DRG neurons and dorsal horn neurons on astrocyte microislands. Using immunocytochemistry, we have found that 97%, 93%, 98%, 96%, and 94% of DRG neurons on these microislands express markers often associated with nociceptive neurons including Substance P, TRPV1, calcitonin-gene related peptide (CGRP), TrKA, and peripherin, respectively. Triple labeling with these nociceptive-like markers, synaptic vesicle marker Vglut2 and using MAP2 as a dendritic marker revealed the presence of nociceptive-like markers at synaptic terminals. Using this immunocytochemical approach, we counted contact points as overlapping MAP2/Vglut2 puncta and showed that they increased with time in culture. Single and dual patch-clamp recordings showed that overlapping Vglut2/MAP2 puncta observed after a few days in culture are likely to be functional synapses between DRG and dorsal horn neurons in our in vitro assay system. Taken together, these data suggest our co-culture microisland model system consists of mostly nociceptive-like DRG neurons that express presynaptic markers and form functional synapses with their dorsal horn partners. Thus, this model system may have direct application for studies on factors regulating development of nociceptive DRG/dorsal horn synapses.

摘要

伤害性感觉背根神经节 (DRG) 神经元和脊髓背角神经元之间的突触代表了传递痛觉刺激的第一个部位。由于缺乏可靠的模型系统来重建这两种神经元群体之间的突触发生,因此我们对这些突触的分子组织和发育的了解还很有限。为了解决这个问题,我们建立了一个体外测定系统,该系统由分别纯化的 DRG 神经元和星形胶质细胞微岛上的背角神经元组成。通过免疫细胞化学,我们发现这些微岛上的 97%、93%、98%、96%和 94%的 DRG 神经元分别表达与伤害性神经元相关的标志物,包括 P 物质、TRPV1、降钙素基因相关肽 (CGRP)、TrKA 和外周蛋白。用这些伤害性样标志物、突触小泡标志物 Vglut2 和 MAP2 作为树突标志物进行三重标记,显示出在突触末端存在伤害性样标志物。使用这种免疫细胞化学方法,我们计算了接触点作为重叠的 MAP2/Vglut2 斑点,并显示它们在培养过程中随时间增加。单和双膜片钳记录显示,在培养几天后观察到的重叠 Vglut2/MAP2 斑点可能是我们体外测定系统中 DRG 和背角神经元之间的功能性突触。总之,这些数据表明我们的共培养微岛模型系统主要由表达突触前标志物的伤害性样 DRG 神经元组成,并与它们的背角伴侣形成功能性突触。因此,该模型系统可能直接应用于研究调节伤害性 DRG/背角突触发育的因素。

相似文献

1
An in vitro assay system for studying synapse formation between nociceptive dorsal root ganglion and dorsal horn neurons.
J Neurosci Methods. 2010 Jun 15;189(2):197-204. doi: 10.1016/j.jneumeth.2010.04.002. Epub 2010 Apr 10.
2
Chronic pregabalin inhibits synaptic transmission between rat dorsal root ganglion and dorsal horn neurons in culture.
Channels (Austin). 2012 Mar-Apr;6(2):124-32. doi: 10.4161/chan.19805. Epub 2012 Mar 1.
3
Presynaptic kainate receptors regulate spinal sensory transmission.
J Neurosci. 2001 Jan 1;21(1):59-66. doi: 10.1523/JNEUROSCI.21-01-00059.2001.
4
A two-compartment in vitro model for studies of modulation of nociceptive transmission.
J Neurosci Methods. 2001 Feb 15;105(2):175-84. doi: 10.1016/s0165-0270(00)00360-5.
7
Presynaptic Inhibition of Primary Nociceptive Signals to Dorsal Horn Lamina I Neurons by Dopamine.
J Neurosci. 2018 Oct 10;38(41):8809-8821. doi: 10.1523/JNEUROSCI.0323-18.2018. Epub 2018 Aug 24.
8
Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission.
J Neurosci. 2004 Jan 21;24(3):762-71. doi: 10.1523/JNEUROSCI.4658-03.2004.
9
Regulation of Nociceptive Glutamatergic Signaling by Presynaptic Kv3.4 Channels in the Rat Spinal Dorsal Horn.
J Neurosci. 2018 Apr 11;38(15):3729-3740. doi: 10.1523/JNEUROSCI.3212-17.2018. Epub 2018 Mar 14.

引用本文的文献

1
Decoding Pain: Next-Generation In Vitro Systems for Mechanistic Insights and Drug Discovery.
FASEB J. 2025 Aug 31;39(16):e70914. doi: 10.1096/fj.202501025RR.
2
A microfluidic model of the first sensory synapse for analgesic target discovery.
Mol Pain. 2024 Jan-Dec;20:17448069241293286. doi: 10.1177/17448069241293286.
3
Capsaicin-Induced Endocytosis of Endogenous Presynaptic Ca2.2 in DRG-Spinal Cord Co-Cultures Inhibits Presynaptic Function.
Function (Oxf). 2022 Nov 25;4(1):zqac058. doi: 10.1093/function/zqac058. eCollection 2023.
4
Localization of the Priming Factors CAPS1 and CAPS2 in Mouse Sensory Neurons Is Determined by Their N-Termini.
Front Mol Neurosci. 2022 Apr 14;15:674243. doi: 10.3389/fnmol.2022.674243. eCollection 2022.
5
Confocal Microscopy of Reovirus Transport in Living Dorsal Root Ganglion Neurons.
Bio Protoc. 2020 Nov 20;10(22):e3825. doi: 10.21769/BioProtoc.3825.
8
The EGF-LIKE domain of thrombospondin-4 is a key determinant in the development of pain states due to increased excitatory synaptogenesis.
J Biol Chem. 2018 Oct 19;293(42):16453-16463. doi: 10.1074/jbc.RA118.003591. Epub 2018 Sep 7.
10

本文引用的文献

1
Dissection, plating, and maintenance of dorsal horn neuron cultures.
Cold Spring Harb Protoc. 2009 Aug;2009(8):pdb.prot5274. doi: 10.1101/pdb.prot5274.
2
Dissection, plating, and maintenance of cortical astrocyte cultures.
Cold Spring Harb Protoc. 2009 Aug;2009(8):pdb.prot5273. doi: 10.1101/pdb.prot5273.
3
Preparation of coverslips for neuronal cultures.
Cold Spring Harb Protoc. 2009 Aug;2009(8):pdb.prot5272. doi: 10.1101/pdb.prot5272.
4
Heterogeneity in astrocyte morphology and physiology.
Brain Res Rev. 2010 May;63(1-2):2-10. doi: 10.1016/j.brainresrev.2009.12.001. Epub 2009 Dec 11.
5
Nociceptors--noxious stimulus detectors.
Neuron. 2007 Aug 2;55(3):353-64. doi: 10.1016/j.neuron.2007.07.016.
6
Dynamic aspects of CNS synapse formation.
Annu Rev Neurosci. 2007;30:425-50. doi: 10.1146/annurev.neuro.29.051605.112830.
7
Specification and connectivity of neuronal subtypes in the sensory lineage.
Nat Rev Neurosci. 2007 Feb;8(2):114-27. doi: 10.1038/nrn2057.
8
Electrical activity in early neuronal development.
Nature. 2006 Dec 7;444(7120):707-12. doi: 10.1038/nature05300.
9
Regional variations in the glial influence on synapse development in the mouse CNS.
J Physiol. 2006 Nov 15;577(Pt 1):249-61. doi: 10.1113/jphysiol.2006.117358. Epub 2006 Sep 7.
10
The development and modulation of nociceptive circuitry.
Curr Opin Neurobiol. 2006 Aug;16(4):460-6. doi: 10.1016/j.conb.2006.06.002. Epub 2006 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验