Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
Jefferson College of Biomedical Sciences at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
J Neurosci. 2018 Apr 11;38(15):3729-3740. doi: 10.1523/JNEUROSCI.3212-17.2018. Epub 2018 Mar 14.
Presynaptic voltage-gated K (Kv) channels in dorsal root ganglion (DRG) neurons are thought to regulate nociceptive synaptic transmission in the spinal dorsal horn. However, the Kv channel subtypes responsible for this critical role have not been identified. The Kv3.4 channel is particularly important because it is robustly expressed in DRG nociceptors, where it regulates action potential (AP) duration. Furthermore, Kv3.4 dysfunction is implicated in the pathophysiology of neuropathic pain in multiple pain models. We hypothesized that, through their ability to modulate AP repolarization, Kv3.4 channels in DRG nociceptors help to regulate nociceptive synaptic transmission. To test this hypothesis, we investigated Kv3.4 immunoreactivity (IR) in the rat cervical superficial dorsal horn (sDH) in both sexes and implemented an intact spinal cord preparation to investigate glutamatergic synaptic currents from second order neurons in the sDH under conditions that selectively inhibit the Kv3.4 current. We found presynaptic Kv3.4 IR in peptidergic and nonpeptidergic nociceptive fibers of the sDH. The Kv3.4 channel is hypersensitive to 4-aminopyridine and tetraethylammonium (TEA). Accordingly, 50 μm 4-aminopyridine and 500 μm TEA significantly prolong the AP, slow the maximum rate of repolarization in small-diameter DRG neurons, and potentiate monosynaptic excitatory postsynaptic currents (EPSCs) in dorsal horn laminae I and II through a presynaptic mechanism. In contrast, highly specific inhibitors of BK, Kv7, and Kv1 channels are less effective modulators of the AP and have little to no effect on EPSCs. The results strongly suggest that presynaptic Kv3.4 channels are major regulators of nociceptive synaptic transmission in the spinal cord. Intractable neuropathic pain can result from disease or traumatic injury and many studies have been conducted to determine the underlying pathophysiological changes. Voltage-gated ion channels, including the K channel Kv3.4, are dysregulated in multiple pain models. Kv3.4 channels are ubiquitously expressed in the dorsal root ganglion (DRG), where they are major regulators of DRG excitability. However, little is known about the ionic mechanisms that regulate nociceptive synaptic transmission at the level of the first synapse in the spinal cord, which is critical to pain transmission in both intact and pathological states. Here, we show that Kv3.4 channels have a significant impact on glutamatergic synaptic transmission in the dorsal horn, further illuminating its potential as a molecular pain therapeutic target.
背根神经节 (DRG) 神经元中的突触前电压门控 K (Kv) 通道被认为调节脊髓背角中的伤害性突触传递。然而,负责这一关键作用的 Kv 通道亚型尚未确定。Kv3.4 通道尤为重要,因为它在 DRG 伤害感受器中表达丰富,在那里它调节动作电位 (AP) 持续时间。此外,Kv3.4 功能障碍与多种疼痛模型中的神经性疼痛的病理生理学有关。我们假设,通过调节 AP 复极化的能力,DRG 伤害感受器中的 Kv3.4 通道有助于调节伤害性突触传递。为了验证这一假设,我们在两性大鼠颈上交感背角 (sDH) 中研究了 Kv3.4 免疫反应 (IR),并实施了完整的脊髓制备,以在选择性抑制 Kv3.4 电流的情况下研究 sDH 中的二级神经元的谷氨酸能突触电流。我们发现,sDH 中的肽能和非肽能伤害性纤维存在突触前 Kv3.4 IR。Kv3.4 通道对 4-氨基吡啶和四乙铵 (TEA) 高度敏感。因此,50 μm 4-氨基吡啶和 500 μm TEA 显著延长 AP,减缓小直径 DRG 神经元的最大复极率,并通过突触前机制增强背角 I 和 II 层的单突触兴奋性突触后电流 (EPSC)。相比之下,BK、Kv7 和 Kv1 通道的高度特异性抑制剂对 AP 的调节作用较弱,对 EPSC 几乎没有影响。这些结果强烈表明,突触前 Kv3.4 通道是脊髓伤害性突触传递的主要调节者。顽固性神经性疼痛可由疾病或创伤性损伤引起,许多研究已经进行以确定潜在的病理生理变化。电压门控离子通道,包括 Kv3.4 通道,在多种疼痛模型中失调。Kv3.4 通道在背根神经节 (DRG) 中广泛表达,是 DRG 兴奋性的主要调节剂。然而,对于调节脊髓中第一突触水平伤害性突触传递的离子机制知之甚少,这对于完整和病理状态下的疼痛传递都至关重要。在这里,我们表明 Kv3.4 通道对背角中的谷氨酸能突触传递有重大影响,进一步阐明了其作为分子疼痛治疗靶点的潜力。