氧化还原信号转导,保守半胱氨酸的烷化(羰基化)使 I 类组蛋白去乙酰化酶 1、2 和 3 失活,并拮抗其转录抑制子功能。
Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function.
机构信息
Department of Medicinal Chemistry, University of Utah School of Pharmacy, Salt Lake City, Utah 84112, USA.
出版信息
J Biol Chem. 2010 Jun 4;285(23):17417-24. doi: 10.1074/jbc.M109.089250. Epub 2010 Apr 12.
Cells use redox signaling to adapt to oxidative stress. For instance, certain transcription factors exist in a latent state that may be disrupted by oxidative modifications that activate their transcription potential. We hypothesized that DNA-binding sites (response elements) for redox-sensitive transcription factors may also exist in a latent state, maintained by co-repressor complexes containing class I histone deacetylase (HDAC) enzymes, and that HDAC inactivation by oxidative stress may antagonize deacetylase activity and unmask electrophile-response elements, thus activating transcription. Electrophiles suitable to test this hypothesis include reactive carbonyl species, often derived from peroxidation of arachidonic acid. We report that alpha,beta-unsaturated carbonyl compounds, e.g. the cyclopentenone prostaglandin, 15-deoxy-Delta12,14-PGJ(2) (15d-PGJ(2)), and 4-hydroxy-2-nonenal (4HNE), alkylate (carbonylate), a subset of class I HDACs including HDAC1, -2, and -3, but not HDAC8. Covalent modification at two conserved cysteine residues, corresponding to Cys(261) and Cys(273) in HDAC1, coincided with attenuation of histone deacetylase activity, changes in histone H3 and H4 acetylation patterns, derepression of a LEF1.beta-catenin model system, and transcription of HDAC-repressed genes, e.g. heme oxygenase-1 (HO-1), Gadd45, and HSP70. Identification of particular class I HDACs as components of the redox/electrophile-responsive proteome offers a basis for understanding how cells stratify their responses to varying degrees of pathophysiological oxidative stress associated with inflammation, cancer, and metabolic syndrome.
细胞利用氧化还原信号来适应氧化应激。例如,某些转录因子处于潜伏状态,可能会被氧化修饰破坏,从而激活其转录潜能。我们假设,氧化还原敏感转录因子的 DNA 结合位点(反应元件)也可能处于潜伏状态,由含有 I 类组蛋白去乙酰化酶(HDAC)的共抑制复合物维持,氧化应激导致 HDAC 失活可能拮抗去乙酰化酶活性并揭示亲电反应元件,从而激活转录。适合测试这一假设的亲电子物质包括活性羰基物质,通常来源于花生四烯酸的过氧化。我们报告说,α,β-不饱和羰基化合物,例如环戊烯酮前列腺素,15-脱氧-Δ12,14-PGJ2(15d-PGJ2)和 4-羟基-2-壬烯醛(4HNE),使 I 类 HDAC 中的一部分发生烷基化(羰基化),包括 HDAC1、-2 和 -3,但不包括 HDAC8。两个保守半胱氨酸残基的共价修饰,对应于 HDAC1 中的 Cys261 和 Cys273,同时伴随着组蛋白去乙酰化酶活性的减弱、组蛋白 H3 和 H4 乙酰化模式的改变、LEF1-β-连环蛋白模型系统的去抑制以及 HDAC 抑制基因的转录,例如血红素加氧酶-1(HO-1)、Gadd45 和 HSP70。特定 I 类 HDAC 作为氧化还原/亲电反应蛋白质组的组成部分的鉴定为理解细胞如何对与炎症、癌症和代谢综合征相关的不同程度的病理生理氧化应激做出分层反应提供了基础。