Suppr超能文献

基于聚(β-L-苹果酸)的多功能纳米载体向肿瘤细胞递送替莫唑胺。

Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid).

机构信息

Department of Neurosurgery, Cedars-Sinai Medical Center, 8631 W. Third Street, Suite 800E, Los Angeles, California 90048, USA.

出版信息

Pharm Res. 2010 Nov;27(11):2317-29. doi: 10.1007/s11095-010-0091-0. Epub 2010 Apr 13.

Abstract

PURPOSE

Temozolomide (TMZ) is a pro-drug releasing a DNA alkylating agent that is the most effective drug to treat glial tumors when combined with radiation. TMZ is toxic, and therapeutic dosages are limited by severe side effects. Targeted delivery is thus needed to improve efficiency and reduce non-tumor tissue toxicity.

METHODS

Multifunctional targetable nanoconjugates of TMZ hydrazide were synthesized using poly(β-L-malic acid) platform, which contained a targeting monoclonal antibody to transferrin receptor (TfR), trileucine (LLL), for pH-dependent endosomal membrane disruption, and PEG for protection.

RESULTS

The water-soluble TMZ nanoconjugates had hydrodynamic diameters in the range of 6.5 to 14.8 nm and ζ potentials in the range of -6.3 to -17.7 mV. Fifty percent degradation in human plasma was observed in 40 h at 37°C. TMZ conjugated with polymer had a half-life of 5-7 h, compared with 1.8 h for free TMZ. The strongest reduction of human brain and breast cancer cell viability was obtained by versions of TMZ nanoconjugates containing LLL and anti-TfR antibody. TMZ-resistant cancer cell lines were sensitive to TMZ nanoconjugate treatment.

CONCLUSIONS

TMZ-polymer nanoconjugates entered the tumor cells by receptor-mediated endocytosis, effectively reduced cancer cell viability, and can potentially be used for targeted tumor treatment.

摘要

目的

替莫唑胺(TMZ)是一种前体药物,释放出一种 DNA 烷化剂,与放射治疗联合使用时是治疗神经胶质瘤最有效的药物。TMZ 具有毒性,治疗剂量受到严重副作用的限制。因此,需要靶向递送以提高效率并降低非肿瘤组织毒性。

方法

使用聚(β-L-马来酸)平台合成了 TMZ 酰肼的多功能靶向纳米复合物,其中包含针对转铁蛋白受体(TfR)的单克隆抗体、三亮氨酸(LLL)用于 pH 依赖性内涵体膜破坏以及 PEG 用于保护。

结果

水溶性 TMZ 纳米复合物的水动力学直径在 6.5 至 14.8nm 范围内,ζ 电位在-6.3 至-17.7mV 范围内。在 37°C 下,40 小时内人血浆中观察到 50%的降解。与游离 TMZ 的 1.8 小时相比,与聚合物偶联的 TMZ 的半衰期为 5-7 小时。含有 LLL 和抗 TfR 抗体的 TMZ 纳米复合物版本可最大程度地降低人脑和乳腺癌细胞活力。TMZ 耐药癌细胞系对 TMZ 纳米复合物治疗敏感。

结论

TMZ-聚合物纳米复合物通过受体介导的内吞作用进入肿瘤细胞,有效降低了癌细胞活力,并且可能可用于靶向肿瘤治疗。

相似文献

1
Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid).
Pharm Res. 2010 Nov;27(11):2317-29. doi: 10.1007/s11095-010-0091-0. Epub 2010 Apr 13.
3
Codelivery of temozolomide and siRNA with polymeric nanocarrier for effective glioma treatment.
Int J Nanomedicine. 2018 Jun 15;13:3467-3480. doi: 10.2147/IJN.S164611. eCollection 2018.
4
Temozolomide nanoparticles for targeted glioblastoma therapy.
ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6674-82. doi: 10.1021/am5092165. Epub 2015 Mar 18.
6
Crystal engineering of stable temozolomide cocrystals.
Chem Asian J. 2012 Oct;7(10):2274-85. doi: 10.1002/asia.201200205. Epub 2012 May 21.
7
Development and Validation of a Targeted Treatment for Brain Tumors Using a Multi-Drug Loaded, Relapse-Resistant Polymeric Theranostic.
Biomacromolecules. 2023 Jun 12;24(6):2674-2690. doi: 10.1021/acs.biomac.3c00138. Epub 2023 May 4.
9
Preparation of poly(β-L-malic acid)-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery.
Int J Nanomedicine. 2015 Mar 10;10:1941-52. doi: 10.2147/IJN.S78547. eCollection 2015.
10
Liposomal temozolomide drug delivery using convection enhanced delivery.
J Control Release. 2017 Sep 10;261:138-146. doi: 10.1016/j.jconrel.2017.06.028. Epub 2017 Jun 27.

引用本文的文献

1
Antibody-conjugated polymer nanoparticles for brain cancer.
Drug Deliv Transl Res. 2025 Aug 20. doi: 10.1007/s13346-025-01947-0.
3
Enhancing temozolomide stability and efficacy through hybrid nanoconjugate approach for improved glioblastoma multiforme treatment.
Asian J Pharm Sci. 2025 Jun;20(3):101022. doi: 10.1016/j.ajps.2025.101022. Epub 2025 Jan 23.
4
Targeted Boron Neutron Capture Therapy Using Polymalic Acid Derived Nano-Boron to Treat Glioblastoma.
J Oncol Res Ther. 2024;9. doi: 10.29011/2574-710x.10226. Epub 2024 Jun 17.
5
Controlled and Targeted Drug Delivery Using Smart Nanovectors.
Int J Drug Discov Pharm. 2023 Mar;2(1):84-90. doi: 10.53941/ijddp.0201010. Epub 2023 Mar 20.
7
Current advances in temozolomide encapsulation for the enhancement of glioblastoma treatment.
Theranostics. 2023 May 8;13(9):2734-2756. doi: 10.7150/thno.82005. eCollection 2023.
9
Hyperbaric Oxygen Therapy as a Complementary Treatment in Glioblastoma-A Scoping Review.
Front Neurol. 2022 Jul 1;13:886603. doi: 10.3389/fneur.2022.886603. eCollection 2022.
10
Glioblastoma: Current Status, Emerging Targets, and Recent Advances.
J Med Chem. 2022 Jul 14;65(13):8596-8685. doi: 10.1021/acs.jmedchem.1c01946. Epub 2022 Jul 5.

本文引用的文献

1
Design and development of polymer conjugates as anti-angiogenic agents.
Adv Drug Deliv Rev. 2009 Nov 12;61(13):1159-76. doi: 10.1016/j.addr.2009.06.005. Epub 2009 Aug 20.
2
Understanding biophysicochemical interactions at the nano-bio interface.
Nat Mater. 2009 Jul;8(7):543-57. doi: 10.1038/nmat2442. Epub 2009 Jun 14.
3
4
Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts.
Neuro Oncol. 2009 Jun;11(3):281-91. doi: 10.1215/15228517-2008-090. Epub 2008 Oct 24.
5
Nanocarriers as an emerging platform for cancer therapy.
Nat Nanotechnol. 2007 Dec;2(12):751-60. doi: 10.1038/nnano.2007.387.
6
Human methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide.
Mol Pharmacol. 2008 Aug;74(2):505-16. doi: 10.1124/mol.108.045112. Epub 2008 May 13.
8
Advances in brain tumor surgery.
Neurol Clin. 2007 Nov;25(4):975-1003, viii-ix. doi: 10.1016/j.ncl.2007.07.006.
9
Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(beta-L-malic acid).
J Control Release. 2007 Oct 8;122(3):356-63. doi: 10.1016/j.jconrel.2007.05.032. Epub 2007 Jun 5.
10
The 2007 WHO classification of tumours of the central nervous system.
Acta Neuropathol. 2007 Aug;114(2):97-109. doi: 10.1007/s00401-007-0243-4. Epub 2007 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验