Suppr超能文献

用于两步生物打印的光交联透明质酸-明胶水凝胶。

Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting.

机构信息

Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.

出版信息

Tissue Eng Part A. 2010 Aug;16(8):2675-85. doi: 10.1089/ten.TEA.2009.0798.

Abstract

Bioprinting by the codeposition of cells and biomaterials is constrained by the availability of printable materials. Herein we describe a novel macromonomer, a new two-step photocrosslinking strategy, and the use of a simple rapid prototyping system to print a proof-of-concept tubular construct. First, we synthesized the methacrylated ethanolamide derivative of gelatin (GE-MA). Second, partial photochemical cocrosslinking of GE-MA with methacrylated hyaluronic acid (HA-MA) gave an extrudable gel-like fluid. Third, the new HA-MA:GE-MA hydrogels were biocompatible, supporting cell attachment and proliferation of HepG2 C3A, Int-407, and NIH 3T3 cells in vitro. Moreover, hydrogels injected subcutaneously in nude mice produced no inflammatory response. Fourth, using the Fab@Home printing system, we printed a tubular tissue construct. The partially crosslinked hydrogels were extruded from a syringe into a designed base layer, and irradiated again to create a firmer structure. The computer-driven protocol was iterated to complete a cellularized tubular construct with a cell-free core and a cell-free structural halo. Cells encapsulated within this printed construct were viable in culture, and gradually remodeled the synthetic extracellular matrix environment to a naturally secreted extracellular matrix. This two-step photocrosslinkable biomaterial addresses an unmet need for printable hydrogels useful in tissue engineering.

摘要

细胞和生物材料的共沉积生物打印受到可用打印材料的限制。在此,我们描述了一种新型的大分子单体、一种新的两步光交联策略以及使用简单的快速原型制造系统来打印概念验证管状结构。首先,我们合成了明胶的甲基丙烯酰胺衍生物(GE-MA)。其次,GE-MA 与甲基丙烯酰化透明质酸(HA-MA)的部分光化学共交联得到了可挤出的凝胶状流体。第三,新型 HA-MA:GE-MA 水凝胶具有生物相容性,支持 HepG2 C3A、Int-407 和 NIH 3T3 细胞在体外的黏附和增殖。此外,皮下注射到裸鼠中的水凝胶没有引起炎症反应。第四,使用 Fab@Home 打印系统,我们打印了管状组织结构。部分交联的水凝胶从注射器中挤出到设计的底层,然后再次照射以形成更坚固的结构。计算机驱动的方案迭代完成了一个具有无细胞核心和无细胞结构光环的细胞化管状结构。在该打印结构中包封的细胞在培养中是存活的,并逐渐将合成的细胞外基质环境重塑为天然分泌的细胞外基质。这种两步光交联生物材料满足了组织工程中对有用可打印水凝胶的未满足需求。

相似文献

1
Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting.
Tissue Eng Part A. 2010 Aug;16(8):2675-85. doi: 10.1089/ten.TEA.2009.0798.
6
Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.
Acta Biomater. 2014 May;10(5):1836-46. doi: 10.1016/j.actbio.2013.12.005. Epub 2013 Dec 12.
8
Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair.
Ann Biomed Eng. 2004 Mar;32(3):391-7. doi: 10.1023/b:abme.0000017552.65260.94.
9
An Extracellular Matrix-Mimicking Hydrogel for Full Thickness Wound Healing in Diabetic Mice.
Macromol Biosci. 2018 Jul;18(7):e1800047. doi: 10.1002/mabi.201800047. Epub 2018 May 7.
10
Visible Light Cross-Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth.
Macromol Biosci. 2019 Jun;19(6):e1900098. doi: 10.1002/mabi.201900098. Epub 2019 Apr 26.

引用本文的文献

3
enhancement of CD8+ T cell activity using functionalized hydrogel encapsulating tonsil-derived lymphatic endothelial cells.
Theranostics. 2025 Jan 1;15(3):850-874. doi: 10.7150/thno.100079. eCollection 2025.
4
Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices.
Adv Healthc Mater. 2025 Jan;14(1):e2401782. doi: 10.1002/adhm.202401782. Epub 2024 Nov 19.
5
Design considerations for digital light processing bioprinters.
Appl Phys Rev. 2024 Sep;11(3):031314. doi: 10.1063/5.0187558.
6
Dual Crosslinked Antioxidant Mixture of Poly(vinyl alcohol) and Cerium Oxide Nanoparticles as a Bioink for 3D Bioprinting.
ACS Appl Nano Mater. 2023 Sep 25;7(16):18177-18188. doi: 10.1021/acsanm.3c02962. eCollection 2024 Aug 23.
7
GelMA hydrogel dual photo-crosslinking to dynamically modulate ECM stiffness.
Front Bioeng Biotechnol. 2024 Jun 20;12:1363525. doi: 10.3389/fbioe.2024.1363525. eCollection 2024.
8
Advancement in Cancer Vasculogenesis Modeling through 3D Bioprinting Technology.
Biomimetics (Basel). 2024 May 20;9(5):306. doi: 10.3390/biomimetics9050306.
9
3D bioprinted aged human post-infarct myocardium tissue model.
Health Sci Rep. 2024 Apr 22;7(4):e1945. doi: 10.1002/hsr2.1945. eCollection 2024 Apr.
10
Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting.
Biophys Rev (Melville). 2022 Sep 28;3(3):031307. doi: 10.1063/5.0087387. eCollection 2022 Sep.

本文引用的文献

1
Strategies for zonal cartilage repair using hydrogels.
Macromol Biosci. 2009 Nov 10;9(11):1049-58. doi: 10.1002/mabi.200900176.
2
Scaffold-free vascular tissue engineering using bioprinting.
Biomaterials. 2009 Oct;30(30):5910-7. doi: 10.1016/j.biomaterials.2009.06.034. Epub 2009 Aug 6.
3
A new training set-up for trans-apical aortic valve replacement.
Interact Cardiovasc Thorac Surg. 2009 Jun;8(6):599-601. doi: 10.1510/icvts.2009.204149. Epub 2009 Mar 12.
4
Engineering a clinically-useful matrix for cell therapy.
Organogenesis. 2008 Jan;4(1):42-7. doi: 10.4161/org.6152.
5
Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.
Tissue Eng Part A. 2009 Feb;15(2):243-54. doi: 10.1089/ten.tea.2008.0067.
6
Rapid prototyping of compliant human aortic roots for assessment of valved stents.
Interact Cardiovasc Thorac Surg. 2009 Feb;8(2):182-6. doi: 10.1510/icvts.2008.194134. Epub 2008 Nov 26.
7
The effect of photopolymerization on stem cells embedded in hydrogels.
Biomaterials. 2009 Jan;30(3):344-53. doi: 10.1016/j.biomaterials.2008.09.037. Epub 2008 Oct 19.
8
Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering.
Macromol Biosci. 2009 Jan 9;9(1):20-8. doi: 10.1002/mabi.200800141.
9
Use of hyaluronan-derived hydrogels for three-dimensional cell culture and tumor xenografts.
Curr Protoc Cell Biol. 2008 Sep;Chapter 10:Unit 10.14. doi: 10.1002/0471143030.cb1014s40.
10
Rapid biofabrication of tubular tissue constructs by centrifugal casting in a decellularized natural scaffold with laser-machined micropores.
J Mater Sci Mater Med. 2009 Jan;20(1):329-37. doi: 10.1007/s10856-008-3590-3. Epub 2008 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验