Garciamendez-Mijares Carlos Ezio, Aguilar Francisco Javier, Hernandez Pavel, Kuang Xiao, Gonzalez Mauricio, Ortiz Vanessa, Riesgo Ricardo A, Ruiz David S Rendon, Rivera Victoria Abril Manjarrez, Rodriguez Juan Carlos, Mestre Francisco Lugo, Castillo Penelope Ceron, Perez Abraham, Cruz Lourdes Monserrat, Lim Khoon S, Zhang Yu Shrike
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA.
School of Medical Sciences, University of Sydney, Sydney 2006, Australia.
Appl Phys Rev. 2024 Sep;11(3):031314. doi: 10.1063/5.0187558.
With the rapid development and popularization of additive manufacturing, different technologies, including, but not limited to, extrusion-, droplet-, and vat-photopolymerization-based fabrication techniques, have emerged that have allowed tremendous progress in three-dimensional (3D) printing in the past decades. Bioprinting, typically using living cells and/or biomaterials conformed by different printing modalities, has produced functional tissues. As a subclass of vat-photopolymerization bioprinting, digital light processing (DLP) uses digitally controlled photomasks to selectively solidify liquid photocurable bioinks to construct complex physical objects in a layer-by-layer manner. DLP bioprinting presents unique advantages, including short printing times, relatively low manufacturing costs, and decently high resolutions, allowing users to achieve significant progress in the bioprinting of tissue-like complex structures. Nevertheless, the need to accommodate different materials while bioprinting and improve the printing performance has driven the rapid progress in DLP bioprinters, which requires multiple pieces of knowledge ranging from optics, electronics, software, and materials beyond the biological aspects. This raises the need for a comprehensive review to recapitulate the most important considerations in the design and assembly of DLP bioprinters. This review begins with analyzing unique considerations and specific examples in the hardware, including the resin vat, optical system, and electronics. In the software, the workflow is analyzed, including the parameters to be considered for the control of the bioprinter and the voxelizing/slicing algorithm. In addition, we briefly discuss the material requirements for DLP bioprinting. Then, we provide a section with best practices and maintenance of a do-it-yourself DLP bioprinter. Finally, we highlight the future outlooks of the DLP technology and their critical role in directing the future of bioprinting. The state-of-the-art progress in DLP bioprinter in this review will provide a set of knowledge for innovative DLP bioprinter designs.
随着增材制造的迅速发展和普及,过去几十年来,出现了多种不同技术,包括但不限于基于挤出、液滴和光固化的制造技术,这些技术推动了三维(3D)打印取得巨大进展。生物打印通常使用通过不同打印方式成型的活细胞和/或生物材料,已制造出功能性组织。作为光固化生物打印的一个子类,数字光处理(DLP)利用数字控制的光掩模选择性地固化液态光固化生物墨水,以逐层方式构建复杂的物理对象。DLP生物打印具有独特优势,包括打印时间短、制造成本相对较低以及分辨率相当高,这使得用户在组织样复杂结构的生物打印方面取得了显著进展。然而,在生物打印过程中容纳不同材料并提高打印性能的需求推动了DLP生物打印机的快速发展,这需要从光学、电子、软件和材料等多个领域获取知识,而不仅仅局限于生物学方面。这就需要进行全面综述,以概括DLP生物打印机设计和组装中最重要的注意事项。本综述首先分析硬件方面的独特注意事项和具体示例,包括树脂槽、光学系统和电子设备。在软件方面,分析工作流程,包括控制生物打印机和体素化/切片算法时要考虑的参数。此外,我们简要讨论DLP生物打印的材料要求。然后,我们提供一个关于自制DLP生物打印机的最佳实践和维护的章节。最后,我们强调DLP技术的未来展望及其在引领生物打印未来发展方面的关键作用。本综述中DLP生物打印机的最新进展将为创新的DLP生物打印机设计提供一系列知识。