Suppr超能文献

使用生物水凝胶和人瓣膜间质细胞的三维打印三叶瓣导管

Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.

作者信息

Duan B, Kapetanovic E, Hockaday L A, Butcher J T

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

College of Human Ecology, Cornell University, Ithaca, NY, USA.

出版信息

Acta Biomater. 2014 May;10(5):1836-46. doi: 10.1016/j.actbio.2013.12.005. Epub 2013 Dec 12.

Abstract

Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements.

摘要

组织工程具有巨大潜力,可提供功能性的全新活体瓣膜替代物,能够与宿主组织整合并生长。在各种瓣膜管道制造技术中,三维(3-D)生物打印能够将细胞和水凝胶沉积到具有解剖学几何形状和异质力学性能的三维构建体中。然而,这种方法的成功转化受到可打印且生物相容的水凝胶材料匮乏的限制。此外,尚不清楚人类瓣膜细胞对这些打印环境的反应如何。在本研究中,基于甲基丙烯酸化透明质酸(Me-HA)和甲基丙烯酸化明胶(Me-Gel)开发了三维可打印的混合水凝胶配方,并用于生物打印包含封装的人主动脉瓣膜间质细胞(HAVIC)的心脏瓣膜管道。增加Me-Gel浓度会导致较低的硬度和较高的粘度,促进细胞铺展,并更好地维持HAVIC成纤维细胞表型。生物打印精度取决于Me-Gel和Me-HA的相对浓度,但经过优化后能够制造出与原始设计精确匹配的三叶形瓣膜形状。封装在生物打印心脏瓣膜内的HAVIC保持高活力,并通过沉积胶原蛋白和糖胺聚糖重塑初始基质。这些发现代表了对调节封装的人VIC行为的生物打印三叶形瓣膜水凝胶的首次合理设计。通过生物打印使用解剖学精确的活体瓣膜支架可能会加速对生理性瓣膜细胞相互作用的理解以及向全新活体瓣膜替代物的进展。

相似文献

引用本文的文献

9
A Biomimetic Leaflet Scaffold for Aortic Valve Remodeling.一种用于主动脉瓣重构的仿生瓣叶支架。
Adv Healthc Mater. 2024 Sep;13(23):e2303972. doi: 10.1002/adhm.202303972. Epub 2024 May 12.

本文引用的文献

2
Tissue-engineered fibrin-based heart valve with a tubular leaflet design.具有管状瓣叶设计的组织工程纤维蛋白基心脏瓣膜。
Tissue Eng Part C Methods. 2014 Apr;20(4):265-75. doi: 10.1089/ten.TEC.2013.0258. Epub 2013 Oct 19.
5
Quantitative optimization of solid freeform deposition of aqueous hydrogels.水凝胶的无模成型的定量优化。
Biofabrication. 2013 Sep;5(3):035001. doi: 10.1088/1758-5082/5/3/035001. Epub 2013 May 2.
8
9
Effect of RGD nanospacing on differentiation of stem cells.RGD 纳米间距对干细胞分化的影响。
Biomaterials. 2013 Apr;34(12):2865-74. doi: 10.1016/j.biomaterials.2013.01.021. Epub 2013 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验