Kim Seok-min, Zhang Wei, Cunningham Brian T
School of Mechanical Engineering, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.
Opt Express. 2010 Mar 1;18(5):4300-9. doi: 10.1364/OE.18.004300.
Coupling a tightly packed layer of discrete metal nanoparticles to the resonant mode of a photonic crystal surface has been demonstrated as a means for obtaining additional electromagnetic gain for surface-enhanced Raman spectroscopy (SERS), in which electric fields of the photonic crystal can couple to plasmon resonances of the metal nanoparticles. Because metal nanoparticles introduce absorption that quench the photonic crystal resonance, a balance must be achieved between locating the metal nanoparticles too close to the surface while still positioning them within the enhanced evanescent field to maximize coupling to surface plasmons. In this work, we describe a parametric study into the design of a photonic crystal-SERS substrate, comprised of a replica molded photonic crystal slab as the dielectric optical resonator, a SiO(2) "post" layer spacer, and an Ag "cap" metal nanostructure. Using the Raman signal for trans-1,2-bis(4pyridyl)ethane, the coupling efficiency was maximized for a SiO(2) "post" layer thickness of 50 nm and a Ag "cap" height of approximatey 20 nm, providing an additional enhancement factor of 21.4.
将紧密堆积的离散金属纳米颗粒与光子晶体表面的共振模式耦合,已被证明是一种为表面增强拉曼光谱(SERS)获得额外电磁增益的方法,其中光子晶体的电场可以耦合到金属纳米颗粒的等离子体共振。由于金属纳米颗粒会引入吸收,从而淬灭光子晶体共振,因此必须在将金属纳米颗粒放置得离表面过近与仍将它们置于增强的倏逝场中以最大化与表面等离子体的耦合之间取得平衡。在这项工作中,我们描述了对一种光子晶体 - SERS 基底设计的参数研究,该基底由作为介电光学谐振器的复制模塑光子晶体平板、SiO₂“柱”层间隔物和 Ag“帽”金属纳米结构组成。使用反式 - 1,2 - 双(4 - 吡啶基)乙烷的拉曼信号,对于 50 nm 的 SiO₂“柱”层厚度和约 20 nm 的 Ag“帽”高度,耦合效率达到最大值,提供了 21.4 的额外增强因子。