古菌异戊烯磷酸激酶的突变凸显了其作用机制,并指导了其他异戊烯单磷酸的磷酸化。
Mutation of archaeal isopentenyl phosphate kinase highlights mechanism and guides phosphorylation of additional isoprenoid monophosphates.
机构信息
Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, La Jolla, California 92037, USA.
出版信息
ACS Chem Biol. 2010 Jun 18;5(6):589-601. doi: 10.1021/cb1000313.
The biosynthesis of isopentenyl diphosphate (IPP) from either the mevalonate (MVA) or the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway provides the key metabolite for primary and secondary isoprenoid biosynthesis. Isoprenoid metabolism plays crucial roles in membrane stability, steroid biosynthesis, vitamin production, protein localization, defense and communication, photoprotection, sugar transport, and glycoprotein biosynthesis. Recently, an alternative branch of the MVA pathway was discovered in the archaeon Methanocaldococcus jannaschii involving a small molecule kinase, isopentenyl phosphate kinase (IPK). IPK belongs to the amino acid kinase (AAK) superfamily. In vitro, IPK phosphorylates isopentenyl monophosphate (IP) in an ATP and Mg(2+)-dependent reaction producing IPP. Here, we describe crystal structures of IPK from M. jannaschii refined to nominal resolutions of 2.0-2.8 A. Notably, an active site histidine residue (His60) forms a hydrogen bond with the terminal phosphate of both substrate and product. This His residue serves as a marker for a subset of the AAK family that catalyzes phosphorylation of phosphate or phosphonate functional groups; the larger family includes carboxyl-directed kinases, which lack this active site residue. Using steady-state kinetic analysis of H60A, H60N, and H60Q mutants, the protonated form of the Nepsilon(2) nitrogen of His60 was shown to be essential for catalysis, most likely through hydrogen bond stabilization of the transition state accompanying transphosphorylation. Moreover, the structures served as the starting point for the engineering of IPK mutants capable of the chemoenzymatic synthesis of longer chain isoprenoid diphosphates from monophosphate precursors.
异戊烯二磷酸(IPP)的生物合成来自于甲羟戊酸(MVA)或 1-脱氧-D-木酮糖 5-磷酸(DXP)途径,为初级和次级类异戊二烯生物合成提供了关键代谢物。类异戊二烯代谢在膜稳定性、类固醇生物合成、维生素生产、蛋白质定位、防御和通讯、光保护、糖运输和糖蛋白生物合成中起着至关重要的作用。最近,在古菌 Methanocaldococcus jannaschii 中发现了 MVA 途径的替代分支,涉及一种小分子激酶,即异戊烯磷酸激酶(IPK)。IPK 属于氨基酸激酶(AAK)超家族。在体外,IPK 在 ATP 和 Mg2+依赖性反应中磷酸化异戊烯单磷酸(IP),生成 IPP。在这里,我们描述了来自 M. jannaschii 的 IPK 的晶体结构,其分辨率分别为 2.0-2.8Å。值得注意的是,活性部位的组氨酸残基(His60)与底物和产物的末端磷酸基团形成氢键。该 His 残基是催化磷酸或膦酸官能团磷酸化的 AAK 家族的一个子集的标志物;更大的家族包括缺乏该活性部位残基的羧基定向激酶。通过对 H60A、H60N 和 H60Q 突变体的稳态动力学分析,表明 His60 的 Nepsilon(2)氮的质子化形式对于催化是必不可少的,很可能通过伴随反磷酸化的过渡态的氢键稳定化来实现。此外,这些结构为工程化 IPK 突变体提供了起点,这些突变体能够从单磷酸前体化学酶促合成更长链的类异戊二烯二磷酸。