Department of Bioengineering, University of Utah, Salt Lake City, UT 84108, USA.
Magn Reson Imaging. 2010 Jun;28(5):637-45. doi: 10.1016/j.mri.2010.03.001. Epub 2010 Apr 13.
A number of methods using temporal and spatial constraints have been proposed for reconstruction of undersampled dynamic magnetic resonance imaging (MRI) data. The complex data can be constrained or regularized in a number of different ways, for example, the time derivative of the magnitude and phase image voxels can be constrained separately or jointly. Intuitively, the performance of different regularizations will depend on both the data and the chosen temporal constraints. Here, a complex temporal total variation (TV) constraint was compared to the use of separate real and imaginary constraints, and to a magnitude constraint alone. Projection onto Convex Sets (POCS) with a gradient descent method was used to implement the diverse temporal constraints in reconstructions of DCE MRI data. For breast DCE data, serial POCS with separate real and imaginary TV constraints was found to give relatively poor results while serial/parallel POCS with a complex temporal TV constraint and serial POCS with a magnitude-only temporal TV constraint performed well with an acceleration factor as large as R=6. In the tumor area, the best method was found to be parallel POCS with complex temporal TV constraint. This method resulted in estimates for the pharmacokinetic parameters that were linearly correlated to those estimated from the fully-sampled data, with K(trans,R=6)=0.97 K(trans,R=1)+0.00 with correlation coefficient r=0.98, k(ep,R=6)=0.95 k(ep,R=1)+0.00 (r=0.85). These results suggest that it is possible to acquire highly undersampled breast DCE-MRI data with improved spatial and/or temporal resolution with minimal loss of image quality.
已经提出了许多使用时间和空间约束的方法来重建欠采样的动态磁共振成像 (MRI) 数据。可以以多种不同的方式约束或正则化复数数据,例如,可以分别或共同约束幅度和相位图像体素的时间导数。直观地说,不同正则化的性能将取决于数据和所选的时间约束。在这里,将复杂的时间总变差 (TV) 约束与使用单独的实部和虚部约束以及仅幅度约束进行了比较。使用梯度下降方法的投影到凸集 (POCS) 用于在 DCE MRI 数据重建中实现不同的时间约束。对于乳腺 DCE 数据,发现单独的实部和虚部 TV 约束的串行 POCS 产生相对较差的结果,而具有复杂时间 TV 约束的串行/并行 POCS 和仅具有幅度时间 TV 约束的串行 POCS 在加速因子高达 R=6 时表现良好。在肿瘤区域,发现最佳方法是具有复杂时间 TV 约束的并行 POCS。该方法产生的药代动力学参数估计与从完全采样数据中估计的参数线性相关,其中 K(trans,R=6)=0.97 K(trans,R=1)+0.00,相关系数 r=0.98,k(ep,R=6)=0.95 k(ep,R=1)+0.00(r=0.85)。这些结果表明,有可能以最小的图像质量损失获得具有改进的空间和/或时间分辨率的高度欠采样的乳腺 DCE-MRI 数据。