Nakarmi Ukash, Wang Yanhua, Lyu Jingyuan, Liang Dong, Ying Leslie
IEEE Trans Med Imaging. 2017 Nov;36(11):2297-2307. doi: 10.1109/TMI.2017.2723871. Epub 2017 Jul 5.
While many low rank and sparsity-based approaches have been developed for accelerated dynamic magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist data. Within this framework, many existing algorithms can be extended to kernel framework with nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank model generalizing the conventional low rank formulation. The algorithm consists of manifold learning using kernel, low rank enforcement in feature space, and preimaging with data consistency. Extensive simulation and experiment results show that the proposed method surpasses the conventional low-rank-modeled approaches for dMRI.
虽然已经开发了许多基于低秩和稀疏性的方法来加速动态磁共振成像(dMRI),但它们都在输入空间中使用低秩性或稀疏性,而忽略了大多数dMRI数据中固有的非线性相关性。在本文中,我们提出了一个基于核的框架,以便在从亚奈奎斯特数据进行重建时允许非线性流形模型。在此框架内,许多现有算法可以扩展到具有非线性模型的核框架。特别是,我们开发了一种新颖的算法,该算法具有基于核的低秩模型,推广了传统的低秩公式。该算法包括使用核的流形学习、特征空间中的低秩增强以及具有数据一致性的预成像。大量的模拟和实验结果表明,所提出的方法优于传统的基于低秩模型的dMRI方法。