Suppr超能文献

乳腺压缩感知动态对比增强磁共振成像中时间正则化器的定量评估

Quantitative Evaluation of Temporal Regularizers in Compressed Sensing Dynamic Contrast Enhanced MRI of the Breast.

作者信息

Wang Dong, Arlinghaus Lori R, Yankeelov Thomas E, Yang Xiaoping, Smith David S

机构信息

School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.

Department of Mathematics, Vanderbilt University, Nashville, TN, USA.

出版信息

Int J Biomed Imaging. 2017;2017:7835749. doi: 10.1155/2017/7835749. Epub 2017 Aug 28.

Abstract

PURPOSE

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled -space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast.

METHODS

We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV), second-order total generalized variation (TGV ), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic parameters (volume transfer constant) and (extravascular-extracellular volume fraction) across a population of random sampling schemes.

RESULTS

NN produced the lowest image error (SER: 29.1), while TV/TGV produced the most accurate (CCC: 0.974/0.974) and (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least accurate (CCC: 0.842) and (CCC: 0.799).

CONCLUSION

TV/TGV should be used as temporal constraints for CS DCE-MRI of the breast.

摘要

目的

动态对比增强磁共振成像(DCE-MRI)用于癌症成像以探测肿瘤血管特性。压缩感知(CS)理论使得使用非线性恢复方案从随机欠采样的k空间数据中恢复磁共振图像成为可能。本文的目的是定量评估用于乳腺CS DCE-MRI的常见时间稀疏性促进正则化方法。

方法

我们在4.5倍回顾性欠采样的笛卡尔体内乳腺DCE-MRI数据上考虑了五种普遍存在的时间正则化方法:傅里叶变换(FT)、哈尔小波变换(WT)、总变差(TV)、二阶总广义变差(TGV)和核范数(NN)。我们测量了重建图像的信噪比(SER)、肿瘤均值的误差以及在一系列随机采样方案中推导的药代动力学参数(容积转移常数)和(血管外-细胞外容积分数)的一致性相关系数(CCC)。

结果

NN产生的图像误差最低(SER:29.1),而TV/TGV产生的最准确(CCC:0.974/0.974)和(CCC:0.916/0.917)。WT产生的图像误差最高(SER:21.8),而FT产生的最不准确(CCC:0.842)和(CCC:0.799)。

结论

TV/TGV应用作乳腺CS DCE-MRI的时间约束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95b5/5592397/fa461a2006d8/IJBI2017-7835749.001.jpg

相似文献

本文引用的文献

10
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.利用稀疏性和低秩结构的加速动态 MRI:k-t SLR。
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验