Suppr超能文献

先验图像约束压缩感知(PICCS):一种从高度欠采样投影数据集中精确重建动态CT图像的方法。

Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets.

作者信息

Chen Guang-Hong, Tang Jie, Leng Shuai

出版信息

Med Phys. 2008 Feb;35(2):660-3. doi: 10.1118/1.2836423.

Abstract

When the number of projections does not satisfy the Shannon/Nyquist sampling requirement, streaking artifacts are inevitable in x-ray computed tomography (CT) images reconstructed using filtered backprojection algorithms. In this letter, the spatial-temporal correlations in dynamic CT imaging have been exploited to sparsify dynamic CT image sequences and the newly proposed compressed sensing (CS) reconstruction method is applied to reconstruct the target image sequences. A prior image reconstructed from the union of interleaved dynamical data sets is utilized to constrain the CS image reconstruction for the individual time frames. This method is referred to as prior image constrained compressed sensing (PICCS). In vivo experimental animal studies were conducted to validate the PICCS algorithm, and the results indicate that PICCS enables accurate reconstruction of dynamic CT images using about 20 view angles, which corresponds to an under-sampling factor of 32. This undersampling factor implies a potential radiation dose reduction by a factor of 32 in myocardial CT perfusion imaging.

摘要

当投影数量不满足香农/奈奎斯特采样要求时,在使用滤波反投影算法重建的X射线计算机断层扫描(CT)图像中,条纹伪影是不可避免的。在这封信中,动态CT成像中的时空相关性被用于稀疏动态CT图像序列,并且新提出的压缩感知(CS)重建方法被应用于重建目标图像序列。从交错动态数据集的并集重建的先验图像被用于约束各个时间帧的CS图像重建。该方法被称为先验图像约束压缩感知(PICCS)。进行了体内实验动物研究以验证PICCS算法,结果表明PICCS能够使用约20个视角准确重建动态CT图像,这对应于32的欠采样因子。这个欠采样因子意味着在心肌CT灌注成像中潜在的辐射剂量降低32倍。

相似文献

8
Spectrotemporal CT data acquisition and reconstruction at low dose.
Med Phys. 2015 Nov;42(11):6317-36. doi: 10.1118/1.4931407.
9
High temporal resolution and streak-free four-dimensional cone-beam computed tomography.
Phys Med Biol. 2008 Oct 21;53(20):5653-73. doi: 10.1088/0031-9155/53/20/006. Epub 2008 Sep 24.

引用本文的文献

1
Semi-stationary Multi-source AI-powered Real-time Tomography.
IEEE Trans Radiat Plasma Med Sci. 2025 Jan;9(1):118-130. doi: 10.1109/trpms.2024.3433575. Epub 2024 Jul 25.
4
Dual-Domain deep prior guided sparse-view CT reconstruction with multi-scale fusion attention.
Sci Rep. 2025 May 15;15(1):16894. doi: 10.1038/s41598-025-02133-5.
5
An end-to-end neural network for 4D cardiac CT reconstruction using single-beat scans.
Phys Med Biol. 2025 Apr 22;70(9). doi: 10.1088/1361-6560/adcafb.
10
Superimposed Wavefront Imaging of Diffraction-enhanced X-rays: sparsity-aware CT reconstruction from limited-view projections.
Int J Comput Assist Radiol Surg. 2025 Apr;20(4):653-663. doi: 10.1007/s11548-024-03303-y. Epub 2024 Dec 26.

本文引用的文献

2
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验