Suppr超能文献

靶向心血管分子成像探针的设计。

Design of targeted cardiovascular molecular imaging probes.

机构信息

Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, Missouri, USA.

出版信息

J Nucl Med. 2010 May 1;51 Suppl 1(0 1):3S-17S. doi: 10.2967/jnumed.109.068130. Epub 2010 Apr 15.

Abstract

Molecular imaging relies on the development of sensitive and specific probes coupled with imaging hardware and software to provide information about the molecular status of a disease and its response to therapy, which are important aspects of disease management. As genomic and proteomic information from a variety of cardiovascular diseases becomes available, new cellular and molecular targets will provide an imaging readout of fundamental disease processes. A review of the development and application of several cardiovascular probes is presented here. Strategies for labeling cells with superparamagnetic iron oxide nanoparticles enable monitoring of the delivery of stem cell therapies. Small molecules and biologics (e.g., proteins and antibodies) with high affinity and specificity for cell surface receptors or cellular proteins as well as enzyme substrates or inhibitors may be labeled with single-photon-emitting or positron-emitting isotopes for nuclear molecular imaging applications. Labeling of bispecific antibodies with single-photon-emitting isotopes coupled with a pretargeting strategy may be used to enhance signal accumulation in small lesions. Emerging nanomaterials will provide platforms that have various sizes and structures and that may be used to develop multimeric, multimodal molecular imaging agents to probe one or more targets simultaneously. These platforms may be chemically manipulated to afford molecules with specific targeting and clearance properties. These examples of molecular imaging probes are characteristic of the multidisciplinary nature of the extraction of advanced biochemical information that will enhance diagnostic evaluation and drug development and predict clinical outcomes, fulfilling the promise of personalized medicine and improved patient care.

摘要

分子成像依赖于敏感和特异性探针的开发,以及成像硬件和软件的结合,以提供有关疾病的分子状态及其对治疗反应的信息,这是疾病管理的重要方面。随着各种心血管疾病的基因组和蛋白质组信息的出现,新的细胞和分子靶标将为基本疾病过程提供成像读出。本文综述了几种心血管探针的开发和应用。用超顺磁氧化铁纳米颗粒标记细胞的策略可用于监测干细胞治疗的递送。具有高亲和力和特异性的小分子和生物制剂(例如,细胞表面受体或细胞蛋白的蛋白质和抗体)以及酶底物或抑制剂,可以用单光子发射或正电子发射同位素标记,用于核分子成像应用。用单光子发射同位素标记双特异性抗体并结合预靶向策略,可用于增强小病变中信号的积累。新兴的纳米材料将提供具有各种大小和结构的平台,可用于开发多聚体、多模态分子成像剂,以同时探测一个或多个靶标。这些平台可以通过化学处理来提供具有特定靶向和清除特性的分子。这些分子成像探针的例子体现了提取先进生化信息的多学科性质,这将增强诊断评估、药物开发和预测临床结果,从而实现个性化医疗和改善患者护理的承诺。

相似文献

1
Design of targeted cardiovascular molecular imaging probes.
J Nucl Med. 2010 May 1;51 Suppl 1(0 1):3S-17S. doi: 10.2967/jnumed.109.068130. Epub 2010 Apr 15.
3
Nanoparticles for molecular imaging--an overview.
Endocrinology. 2010 Feb;151(2):474-81. doi: 10.1210/en.2009-1012. Epub 2009 Dec 16.
4
Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents.
Curr Top Med Chem. 2012;12(23):2694-702. doi: 10.2174/1568026611212230007.
6
Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology.
Acc Chem Res. 2008 Dec;41(12):1630-40. doi: 10.1021/ar800045c.
7
Multimodality cardiovascular molecular imaging, part I.
Circ Cardiovasc Imaging. 2008 Nov;1(3):244-56. doi: 10.1161/CIRCIMAGING.108.824359.
8
Nanoparticles for concurrent multimodality imaging and therapy: the dawn of new theragnostic synergies.
Eur J Nucl Med Mol Imaging. 2009 May;36(5):869-74. doi: 10.1007/s00259-009-1104-2.
9
Nanoparticles for imaging and tumor gene delivery.
Tumori. 2008 Mar-Apr;94(2):264-70. doi: 10.1177/030089160809400219.
10
PET-MR and SPECT-MR multimodality probes: Development and challenges.
Theranostics. 2018 Nov 29;8(22):6210-6232. doi: 10.7150/thno.26610. eCollection 2018.

引用本文的文献

1
Theranostics with photodynamic therapy for personalized medicine: to see and to treat.
Theranostics. 2023 Oct 9;13(15):5501-5544. doi: 10.7150/thno.87363. eCollection 2023.
3
Bare Iron Oxide Nanoparticles: Surface Tunability for Biomedical, Sensing and Environmental Applications.
Nanomaterials (Basel). 2019 Nov 12;9(11):1608. doi: 10.3390/nano9111608.
4
Detection of chemotherapy-induced cardiotoxicity with antimyosin pretargeted imaging.
J Nucl Cardiol. 2019 Aug;26(4):1345-1347. doi: 10.1007/s12350-018-1192-0. Epub 2018 Feb 1.
5
Diagnostic and prognostic utility of non-invasive imaging in diabetes management.
World J Diabetes. 2015 Jun 25;6(6):792-806. doi: 10.4239/wjd.v6.i6.792.
6
Assessing the barriers to image-guided drug delivery.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Jan-Feb;6(1):1-14. doi: 10.1002/wnan.1247. Epub 2013 Oct 31.
7
Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications.
Bioconjug Chem. 2012 Apr 18;23(4):671-82. doi: 10.1021/bc200264c. Epub 2012 Feb 6.
8
Transbilayer phospholipids molecular imaging.
EJNMMI Res. 2011 Aug 22;1(1):17. doi: 10.1186/2191-219X-1-17.
10
Targeted Nanocarriers for Imaging and Therapy of Vascular Inflammation.
Curr Opin Colloid Interface Sci. 2011 Jun;16(3):215-227. doi: 10.1016/j.cocis.2011.01.008.

本文引用的文献

1
Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells.
Biomaterials. 2010 Jan;31(1):124-32. doi: 10.1016/j.biomaterials.2009.09.023. Epub 2009 Oct 8.
2
In vivo MRI cell tracking: clinical studies.
AJR Am J Roentgenol. 2009 Aug;193(2):314-25. doi: 10.2214/AJR.09.3107.
3
Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes.
Cancer Res. 2009 Apr 1;69(7):3180-7. doi: 10.1158/0008-5472.CAN-08-3691. Epub 2009 Mar 10.
5
Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents.
Adv Exp Med Biol. 2009;645:227-39. doi: 10.1007/978-0-387-85998-9_35.
6
In vivo tracking of cellular therapeutics using magnetic resonance imaging.
Expert Opin Biol Ther. 2009 Mar;9(3):293-306. doi: 10.1517/14712590802715723.
7
18F labeled nanoparticles for in vivo PET-CT imaging.
Bioconjug Chem. 2009 Feb;20(2):397-401. doi: 10.1021/bc8004649.
8
Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):685-90. doi: 10.1073/pnas.0811757106. Epub 2009 Jan 7.
9
In vivo "hot spot" MR imaging of neural stem cells using fluorinated nanoparticles.
Magn Reson Med. 2008 Dec;60(6):1506-11. doi: 10.1002/mrm.21783.
10
Update on nephrogenic systemic fibrosis.
Magn Reson Imaging Clin N Am. 2008 Nov;16(4):551-60, vii. doi: 10.1016/j.mric.2008.07.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验