Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway.
J Phys Chem B. 2010 May 13;114(18):6144-9. doi: 10.1021/jp909801x.
Binding of allosamidin to the three family 18 chitinases of Serratia marcescens has been studied using isothermal titration calorimetry (ITC). Interestingly, the thermodynamic signatures of allosamidin binding were different for all three chitinases. At pH 6.0, chitinase A (ChiA) binds allosamidin with a K(d) value of 0.17 +/- 0.06 microM where the main part of the driving force is due to enthalpic change (DeltaH(r) degrees = -6.2 +/- 0.2 kcal/mol) and less to entropic change (-TDeltaS(r) degrees = -3.2 kcal/mol). A large part of DeltaH is due to allosamidin stacking with Trp(167) in the -3 subsite. Binding of allosamidin to both chitinase B (ChiB) (K(d) = 0.16 +/- 0.04 microM) and chitinase C (ChiC) (K(d) = 2.0 +/- 0.2 microM) is driven by entropy (DeltaH(r) degrees = 3.8 +/- 0.2 kcal/mol and -TDeltaS(r) degrees = -13.2 kcal/mol for ChiB and DeltaH(r) degrees = -0.6 +/- 0.1 and -TDeltaS(r) degrees = -7.3 kcal/mol for ChiC). For ChiC, the entropic term is dominated by changes in solvation entropy (DeltaS(conf) = 1 cal/K.mol and DeltaS(solv) = 31 cal/K.mol), while, for ChiB, changes in conformational entropy dominate (DeltaS(conf) = 37 cal/K x mol and DeltaS(solv) = 15 cal/K x mol). Corresponding values for ChiA are DeltaS(conf) = 4 cal/K x mol and DeltaS(solv) = 15 cal/K x mol. These remarkable differences in binding parameters reflect the different architectures of the catalytic centers in these enzymes that are adapted to different types of actions: ChiA and ChiB are processive enzymes that move in opposite directions, meaning that allosamidin binds in to "product" subsites in ChiB, while it binds to polymer-binding subsites in ChiA. The values for ChiC are compatible with this enzyme being a nonprocessive endochitinase with a much more open and solvated substrate-binding-site cleft.
利用等温热力学滴定法(ITC)研究了 allo 桑定与粘质沙雷氏菌家族 18 种几丁质酶的结合。有趣的是,allo 桑定与三种几丁质酶的结合热力学特征不同。在 pH6.0 时,几丁质酶 A(ChiA)与 allo 桑定的结合 Kd 值为 0.17±0.06μM,其中主要驱动力是焓变(ΔH(r)°=-6.2±0.2kcal/mol),而熵变较小(-TDeltaS(r)°=-3.2kcal/mol)。ΔH 的很大一部分归因于 allo 桑定与 -3 亚位点的色氨酸(Trp167)堆积。allo 桑定与几丁质酶 B(ChiB)(Kd=0.16±0.04μM)和几丁质酶 C(ChiC)(Kd=2.0±0.2μM)的结合由熵驱动(对于 ChiB,ΔH(r)°=3.8±0.2kcal/mol 和 -TDeltaS(r)°=-13.2kcal/mol,对于 ChiC,ΔH(r)°=-0.6±0.1 和 -TDeltaS(r)°=-7.3kcal/mol)。对于 ChiC,熵项主要由溶剂化熵的变化(ΔS(conf)=1cal/K·mol 和 ΔS(solv)=31cal/K·mol)决定,而对于 ChiB,构象熵的变化占主导地位(ΔS(conf)=37cal/K·mol 和 ΔS(solv)=15cal/K·mol)。ChiA 的相应值为ΔS(conf)=4cal/K·mol 和 ΔS(solv)=15cal/K·mol。这些结合参数的显著差异反映了这些酶催化中心的不同结构,这些结构适应于不同类型的作用:ChiA 和 ChiB 是移动方向相反的连续酶,这意味着 allo 桑定在 ChiB 中结合到“产物”亚位点,而在 ChiA 中结合到聚合物结合亚位点。ChiC 的值与该酶作为非连续内切几丁质酶的性质相符,其具有更开放和溶剂化的底物结合位点裂缝。