Suppr超能文献

使用分类回归树分析建立肝包虫囊肿胆囊肿沟通的预测模型。

Predictive model of biliocystic communication in liver hydatid cysts using classification and regression tree analysis.

作者信息

El Malki Hadj Omar, El Mejdoubi Yasser, Souadka Amine, Mohsine Raouf, Ifrine Lahcen, Abouqal Redouane, Belkouchi Abdelkader

机构信息

Surgery Departement A Ibn Sina Hospital, Rabat, Morocco.

出版信息

BMC Surg. 2010 Apr 16;10:16. doi: 10.1186/1471-2482-10-16.

Abstract

BACKGROUND

Incidence of liver hydatid cyst (LHC) rupture ranged 15%-40% of all cases and most of them concern the bile duct tree. Patients with biliocystic communication (BCC) had specific clinic and therapeutic aspect. The purpose of this study was to determine witch patients with LHC may develop BCC using classification and regression tree (CART) analysis

METHODS

A retrospective study of 672 patients with liver hydatid cyst treated at the surgery department "A" at Ibn Sina University Hospital, Rabat Morocco. Four-teen risk factors for BCC occurrence were entered into CART analysis to build an algorithm that can predict at the best way the occurrence of BCC.

RESULTS

Incidence of BCC was 24.5%. Subgroups with high risk were patients with jaundice and thick pericyst risk at 73.2% and patients with thick pericyst, with no jaundice 36.5 years and younger with no past history of LHC risk at 40.5%. Our developed CART model has sensitivity at 39.6%, specificity at 93.3%, positive predictive value at 65.6%, a negative predictive value at 82.6% and accuracy of good classification at 80.1%. Discriminating ability of the model was good 82%.

CONCLUSION

we developed a simple classification tool to identify LHC patients with high risk BCC during a routine clinic visit (only on clinical history and examination followed by an ultrasonography). Predictive factors were based on pericyst aspect, jaundice, age, past history of liver hydatidosis and morphological Gharbi cyst aspect. We think that this classification can be useful with efficacy to direct patients at appropriated medical struct's.

摘要

背景

肝包虫囊肿(LHC)破裂的发生率在所有病例中占15%-40%,其中大多数涉及胆管树。胆囊肿通(BCC)患者有特定的临床和治疗方面。本研究的目的是使用分类回归树(CART)分析来确定哪些LHC患者可能发生BCC。

方法

对摩洛哥拉巴特伊本·西那大学医院“A”外科治疗的672例肝包虫囊肿患者进行回顾性研究。将14个BCC发生的危险因素纳入CART分析,以建立一种能够最佳预测BCC发生的算法。

结果

BCC的发生率为24.5%。高危亚组为黄疸和囊肿壁增厚的患者,发生率为73.2%;囊肿壁增厚、无黄疸、36.5岁及以下且无LHC既往史的患者,发生率为40.5%。我们开发的CART模型的敏感性为39.6%,特异性为93.3%,阳性预测值为65.6%,阴性预测值为82.6%,良好分类准确率为80.1%。该模型的判别能力良好,为82%。

结论

我们开发了一种简单的分类工具,用于在常规门诊就诊时(仅根据临床病史和检查,随后进行超声检查)识别具有高风险BCC的LHC患者。预测因素基于囊肿壁情况、黄疸、年龄、肝包虫病既往史和加尔比囊肿形态学情况。我们认为这种分类对于有效地将患者引导至合适的医疗机构可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2604/2867769/9c7ddb267a08/1471-2482-10-16-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验