Suppr超能文献

列线图分析与内部验证用于预测行包虫病肝囊肿手术患者发生胆-胆管交通的风险。

Nomogram Analysis and Internal Validation to Predict the Risk of Cystobiliary Communication in Patients Undergoing Hydatid Liver Cyst Surgery.

机构信息

Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qinghai University, Xining, China.

Qinghai University, Xining, China.

出版信息

World J Surg. 2020 Nov;44(11):3884-3892. doi: 10.1007/s00268-020-05661-5.

Abstract

PURPOSE

Biliary leakage caused by cystobiliary communication (CBC) is a common clinical concern. This study sought to identify predictors of CBC in hepatic cystic echinococcosis (HCE) patients undergoing hydatid liver cyst surgery and establish nomograms to predict CBC.

METHODS

A predictive model was established in a training cohort of 310 HCE patients diagnosed between January 2013 and May 2017. Upon revision of the records of clinical parameters and imaging features of these patients, the lasso regression model was used to optimize feature selection for the CBC risk model. Combined with feature selection, a CBC nomogram was developed with multivariable logistic regression. C-index and calibration plots were used to analyze and evaluate the discrimination and calibration. The net benefit and predictive accuracy of the nomogram were performed via decision curve analysis (DCA) and receiver operating characteristic (ROC) curve. An independent validation cohort of 132 patients recruited from June 2017 to May 2019 was used to evaluate the practicability of the nomogram.

RESULTS

Predictors contained four features, namely alkaline phosphatase (ALP), glutamyl transpeptidase (GGT), cyst size and cyst location. The C-index of the nomogram is 0.791 (95% CI, 0.736-0.845), while the C-index verified by bootstrap is 0.746, indicating high prediction accuracy. The area under the curve (AUC) of the CBC in training was 0.766. ROC curve analysis demonstrated high sensitivity and specificity. Decision curve analysis confirmed the CBC nomogram was clinically useful when the intervention was determined at the non-adherence possibility threshold of 8%.

CONCLUSION

The nomogram developed using the ALP, GGT, cyst size and cyst location could be used to facilitate the CBC risk prediction in HCE patients.

摘要

目的

胆漏是由胆-胆管交通(CBC)引起的,是临床常见的问题。本研究旨在确定肝包虫病(HCE)患者行肝包虫囊肿手术时发生 CBC 的预测因素,并建立预测 CBC 的列线图。

方法

在 2013 年 1 月至 2017 年 5 月诊断的 310 例 HCE 患者的训练队列中建立预测模型。在修订这些患者的临床参数和影像学特征记录后,使用套索回归模型对 CBC 风险模型的特征选择进行优化。结合特征选择,采用多变量逻辑回归建立 CBC 列线图。通过 C 指数和校准图分析和评估区分度和校准度。通过决策曲线分析(DCA)和受试者工作特征(ROC)曲线对列线图的净效益和预测准确性进行评估。2017 年 6 月至 2019 年 5 月招募的 132 例患者的独立验证队列用于评估列线图的实用性。

结果

预测因素包含 4 个特征,即碱性磷酸酶(ALP)、谷氨酰转肽酶(GGT)、囊肿大小和囊肿位置。该列线图的 C 指数为 0.791(95%可信区间,0.736-0.845),而通过 bootstrap 验证的 C 指数为 0.746,表明预测准确率较高。训练中 CBC 的曲线下面积(AUC)为 0.766。ROC 曲线分析表明具有较高的敏感性和特异性。决策曲线分析证实,当干预措施在非依从性可能性阈值为 8%时,CBC 列线图具有临床实用性。

结论

使用 ALP、GGT、囊肿大小和囊肿位置建立的列线图可用于预测 HCE 患者的 CBC 风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6348/7527320/4225ad7c8c86/268_2020_5661_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验