Suppr超能文献

液晶态染色体的双折射和DNA凝聚

Birefringence and DNA condensation of liquid crystalline chromosomes.

作者信息

Chow Man H, Yan Kosmo T H, Bennett Michael J, Wong Joseph T Y

机构信息

Hong Kong University of Science and Technology, Kowloon, Hong Kong.

出版信息

Eukaryot Cell. 2010 Oct;9(10):1577-87. doi: 10.1128/EC.00026-10. Epub 2010 Apr 16.

Abstract

DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes-up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material.

摘要

在体外,高浓度的DNA能自组装成几种液晶相。已知最大的基因组由甲藻的胆甾相液晶染色体(LCCs)编码,甲藻是一类与疟原虫相关的多样原生生物。关于这种液晶包装策略如何用于组织这些基因组,人们知之甚少,这些基因组是现存真核生物中最大的——比人类基因组大80倍。使用半自动偏光显微镜进行的比较测量表明,尽管不同甲藻物种的染色体在带和拱形的超微结构模式上看似相似,但它们的双折射(各向异性材料的一种光学特性)存在很大差异。细胞核中的染色体排列和个体核型也存在很大差异。我们的数据表明,宏观和超微结构排列都会影响液晶染色体的表观双折射。首次证明了绝对延迟水平与DNA含量以及从透射电子显微镜(TEM)显微照片测量得到的观察到的螺旋间距之间存在正相关。诱导染色体解组装的实验揭示了甲藻染色体中的多个组织层次。鉴于蛋白质与DNA的比例较低,我们提出这些LCCs的组装过程中必定涉及对熵驱动力的高度调控利用。了解将这些已知最大的DNA包装并排列成细胞核中不同形状和不同形式的机制,对于将DNA用作纳米结构材料具有重要价值。

相似文献

1
Birefringence and DNA condensation of liquid crystalline chromosomes.
Eukaryot Cell. 2010 Oct;9(10):1577-87. doi: 10.1128/EC.00026-10. Epub 2010 Apr 16.
2
Counterion-mediated decompaction of liquid crystalline chromosomes.
DNA Cell Biol. 2012 Dec;31(12):1657-64. doi: 10.1089/dna.2012.1708. Epub 2012 Oct 16.
4
Positive and negative birefringence in chromosomes.
Chromosoma. 1978 Aug 21;68(1):45-58. doi: 10.1007/BF00330371.
5
Telomere maintenance in liquid crystalline chromosomes of dinoflagellates.
Chromosoma. 2010 Oct;119(5):485-93. doi: 10.1007/s00412-010-0272-y. Epub 2010 Apr 6.
6
Topology of splicing and snRNP biogenesis in dinoflagellate nuclei.
Biol Cell. 2006 Dec;98(12):709-20. doi: 10.1042/BC20050083.
7
Architecture and evolution of dinoflagellate chromosomes: an enigmatic origin.
Cytogenet Genome Res. 2005;109(1-3):268-75. doi: 10.1159/000082409.
8
Architectural Organization of Dinoflagellate Liquid Crystalline Chromosomes.
Microorganisms. 2019 Jan 22;7(2):27. doi: 10.3390/microorganisms7020027.
10
Cholesteric organization of DNA in vivo and in vitro.
Eur J Cell Biol. 1984 Mar;33(2):300-11.

引用本文的文献

1
Dinochromosome Heterotermini with Telosomal Anchorages.
Int J Mol Sci. 2024 Oct 21;25(20):11312. doi: 10.3390/ijms252011312.
2
Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis.
Nat Commun. 2023 Jul 13;14(1):4187. doi: 10.1038/s41467-023-39908-1.
3
Mining genomes to illuminate the specialized chemistry of life.
Nat Rev Genet. 2021 Sep;22(9):553-571. doi: 10.1038/s41576-021-00363-7. Epub 2021 Jun 3.
4
Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum.
Nat Genet. 2021 May;53(5):618-629. doi: 10.1038/s41588-021-00841-y. Epub 2021 Apr 29.
6
7
Chiral Systems Made from DNA.
Adv Sci (Weinh). 2021 Jan 21;8(5):2003113. doi: 10.1002/advs.202003113. eCollection 2021 Mar.
9
Nuclear Gene Transformation in the Dinoflagellate .
Microorganisms. 2020 Jan 16;8(1):126. doi: 10.3390/microorganisms8010126.
10
The Biochemistry and Evolution of the Dinoflagellate Nucleus.
Microorganisms. 2019 Aug 8;7(8):245. doi: 10.3390/microorganisms7080245.

本文引用的文献

1
Entropic organization of interphase chromosomes.
J Cell Biol. 2009 Sep 21;186(6):825-34. doi: 10.1083/jcb.200903083. Epub 2009 Sep 14.
2
Self-association of polynucleosome chains by macromolecular crowding.
Eur Biophys J. 2008 Jul;37(6):1059-64. doi: 10.1007/s00249-008-0276-1. Epub 2008 Feb 8.
3
Concentration-dependent organization of DNA by the dinoflagellate histone-like protein HCc3.
Nucleic Acids Res. 2007;35(8):2573-83. doi: 10.1093/nar/gkm165. Epub 2007 Apr 4.
4
Are liquid crystalline properties of nucleosomes involved in chromosome structure and dynamics?
Philos Trans A Math Phys Eng Sci. 2006 Oct 15;364(1847):2615-33. doi: 10.1098/rsta.2006.1843.
5
Entropy-driven genome organization.
Biophys J. 2006 May 15;90(10):3712-21. doi: 10.1529/biophysj.105.077685. Epub 2006 Feb 24.
6
Type II topoisomerase activities in both the G1 and G2/M phases of the dinoflagellate cell cycle.
Chromosoma. 2005 Dec;114(6):420-31. doi: 10.1007/s00412-005-0027-3. Epub 2005 Nov 15.
7
Proliferation of dinoflagellates: blooming or bleaching.
Bioessays. 2005 Jul;27(7):730-40. doi: 10.1002/bies.20250.
9
A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus.
J Struct Biol. 2004 Jun;146(3):281-90. doi: 10.1016/j.jsb.2003.12.008.
10
Imaging linear birefringence and dichroism in cerebral amyloid pathologies.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15294-8. doi: 10.1073/pnas.2534647100. Epub 2003 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验