Dini Frank Lloyd, Ballo Piercarlo, Badano Luigi, Barbier Paolo, Chella Piersilvio, Conti Umberto, De Tommasi Salvatore Mario, Galderisi Maurizio, Ghio Stefano, Magagnini Enrico, Pieroni Andrea, Rossi Andrea, Rusconi Cesare, Temporelli Pier Luigi
Cardiovascular Diseases Unit 1, Cardiac, Thoracic and Vascular Department, University of Pisa, Via Paradisa, 2, Pisa 56124, Italy.
Eur J Echocardiogr. 2010 Sep;11(8):703-10. doi: 10.1093/ejechocard/jeq047. Epub 2010 Apr 17.
To test a decision model for non-invasive estimation of left ventricular filling pressure (LVFP) in patients with left ventricular (LV) dysfunction and a wide range of ejection fractions (EF).
In patients with LV dysfunction (n = 270; EF = 42 +/- 16%), classification and regression tree (CART) analysis was used to generate a model for the prediction of elevated LVFP, defined as pulmonary capillary wedge pressure (PCWP) >15 mmHg, in a derivation cohort (n = 178). At each step of the decision tree, nodes including single or multiple criteria connected by Boolean operators were tested to achieve the best information entropy gain. Averaged mitral-to-myocardial early velocities ratio (E/e') > or =13 OR E-wave deceleration time <150 ms was closely associated with elevated LVFP. Alternatively, prediction of PCWP >15 mmHg needed the following criteria to be satisfied: (i) intermediate E/e' (13 > E/e' > 8); (ii) left atrial volume index >40 mL/m(2) OR ratio of mitral E-wave and colour M-mode propagation velocity >2 OR difference in duration of pulmonary vein and mitral flow at atrial contraction >30 ms; (iii) estimated pulmonary artery systolic pressure >35 mmHg. Patients were correctly allocated according to PCWP with an 87% sensitivity and a 90% specificity. Compared with the best single parameter estimating LVFP, a 17% relative increase in accuracy was achieved in patients with EF >50%. The model was prospectively validated in a testing group (n = 92): 80% sensitivity, 78% specificity.
This sequential testing is useful to non-invasively predict LVFP in patients with LV dysfunction, especially in those with preserved EF.
测试一种用于无创估计左心室功能不全且射血分数(EF)范围广泛的患者左心室充盈压(LVFP)的决策模型。
在左心室功能不全患者(n = 270;EF = 42±16%)中,使用分类与回归树(CART)分析在一个推导队列(n = 178)中生成预测LVFP升高(定义为肺毛细血管楔压(PCWP)>15 mmHg)的模型。在决策树的每个步骤中,测试包括由布尔运算符连接的单个或多个标准的节点,以实现最佳信息熵增益。平均二尖瓣与心肌早期速度比值(E/e')≥13或E波减速时间<150 ms与LVFP升高密切相关。或者,预测PCWP>15 mmHg需要满足以下标准:(i)中等E/e'(13>E/e'>8);(ii)左心房容积指数>40 mL/m²或二尖瓣E波与彩色M型传播速度比值>2或心房收缩时肺静脉与二尖瓣血流持续时间差>30 ms;(iii)估计肺动脉收缩压>35 mmHg。根据PCWP对患者进行正确分类,敏感性为87%,特异性为90%。与估计LVFP的最佳单一参数相比,EF>50%的患者准确性相对提高了17%。该模型在一个测试组(n = 92)中进行了前瞻性验证:敏感性为80%,特异性为78%。
这种序贯测试有助于无创预测左心室功能不全患者的LVFP,尤其是EF保留的患者。