Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
ACS Appl Mater Interfaces. 2010 May;2(5):1421-9. doi: 10.1021/am1000882.
We report an approach to the functionalization of fibers and fiber-based materials that is based on the deposition of reactive azlactone-functionalized polymers and the "reactive" layer-by-layer assembly of azlactone-containing thin films. We demonstrate (i) that the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be used to modify the surfaces of a model protein-based fiber (horsehair) and cellulose-based materials (e.g., cotton and paper), and (ii) that fibers functionalized in this manner can be used to support the fabrication of covalently cross-linked and reactive polymer multilayers assembled using PVDMA and poly(ethyleneimine) (PEI). The growth, chemical reactivity, and uniformity of films deposited on these substrates were characterized using fluorescence microscopy, confocal microscopy, and scanning electron microscopy (SEM). In addition to the direct functionalization of fibers, we demonstrate that the residual azlactone functionality in PVDMA-treated or film-coated fibers can be exploited to chemically modify the surface chemistry and physicochemical properties of fiber-based materials postfabrication using amine functionalized molecules. For example, we demonstrate that this approach permits control over the surface properties of paper (e.g., absorption of water) by simple postfabrication treatment of film-coated paper with the hydrophobic amine n-decylamine. The azlactone functionality present in these materials provides a platform for the modification of polymer-treated and film-coated fibers with a broad range of other chemical and biological species (e.g., enzymes, peptides, catalysts, etc.). The results of this investigation thus provide a basis for the functionalization of fibers and fiber-based materials (e.g., textile fabrics or nonwoven mats) of potential utility in a broad range of consumer, industrial, and biomedical contexts.
我们报告了一种基于反应性氮杂内酯功能化聚合物沉积和氮杂内酯含薄膜的“反应性”层层组装的纤维和纤维基材料功能化方法。我们证明了(i)氮杂内酯功能化聚合物聚(2-乙烯基-4,4-二甲基氮杂内酯)(PVDMA)可用于修饰模型蛋白纤维(马毛)和纤维素基材料(如棉和纸)的表面,以及(ii)以这种方式功能化的纤维可用于支持使用 PVDMA 和聚(聚乙烯亚胺)(PEI)组装的共价交联和反应性聚合物多层的制造。使用荧光显微镜、共聚焦显微镜和扫描电子显微镜(SEM)对沉积在这些基底上的薄膜的生长、化学反应性和均匀性进行了表征。除了纤维的直接功能化,我们还证明了 PVDMA 处理或薄膜涂层纤维中残留的氮杂内酯官能团可以在制造后用于通过使用胺官能化分子化学修饰纤维基材料的表面化学和物理化学性质。例如,我们证明,通过简单地用疏水性胺正癸胺对涂覆有薄膜的纸张进行后处理,这种方法可以控制纸张的表面性能(例如,水的吸收)。这些材料中存在的氮杂内酯官能团为用广泛的其他化学和生物物质(例如,酶、肽、催化剂等)对聚合物处理和薄膜涂层纤维进行修饰提供了一个平台。因此,这项研究的结果为纤维和纤维基材料(例如,纺织品织物或无纺垫)的功能化提供了基础,这些材料在广泛的消费、工业和生物医学领域具有潜在的应用价值。