Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8375-80. doi: 10.1073/pnas.1003571107. Epub 2010 Apr 19.
The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). Although NO can be both an antimicrobial component of innate immunity and a key signaling molecule in eukaryotes, potential roles in beneficial host-microbe associations have not been described. V. fischeri hnoX encodes a heme NO/oxygen-binding (H-NOX) protein, a member of a family of bacterial NO- and/or O(2)-binding proteins of unknown function. We hypothesized that H-NOX acts as a NO sensor that is involved in regulating symbiosis-related genes early in colonization. Whole-genome expression studies identified 20 genes that were repressed in an NO- and H-NOX-dependent fashion. Ten of these, including hemin-utilization genes, have a promoter with a putative ferric-uptake regulator (Fur) binding site. As predicted, in the presence of NO, wild-type V. fischeri grew more slowly on hemin than a hnoX deletion mutant. Host-colonization studies showed that the hnoX mutant was also 10-fold more efficient in initially colonizing the squid host than the wild type; similarly, in mixed inoculations, it outcompeted the wild-type strain by an average of 16-fold after 24 h. However, the presence of excess hemin or iron reversed this dominance. The advantage of the mutant in colonizing the iron-limited light-organ tissues is caused, at least in part, by its greater ability to acquire host-derived hemin. Our data suggest that V. fischeri normally senses a host-generated NO signal through H-NOX(Vf) and modulates the expression of its iron uptake capacity during the early stages of the light-organ symbiosis.
发光细菌 Vibrio fischeri 在鱿鱼 Euprymna scolopes 的光器官中引发特定的、持久的共生关系。在定植的早期阶段,V. fischeri 暴露于宿主衍生的一氧化氮(NO)中。尽管 NO 可以作为先天免疫的抗菌成分,也是真核生物中的关键信号分子,但在有益的宿主-微生物关联中尚未描述其潜在作用。V. fischeri hnoX 编码一种血红素 NO/氧结合(H-NOX)蛋白,它是一组细菌 NO 和/或 O2 结合蛋白家族的成员,其功能未知。我们假设 H-NOX 作为一种 NO 传感器发挥作用,参与调节定植早期的共生相关基因。全基因组表达研究鉴定出 20 个以 NO 和 H-NOX 依赖方式受抑制的基因。其中 10 个,包括血红素利用基因,其启动子具有推定的铁摄取调节剂(Fur)结合位点。正如预测的那样,在存在 NO 的情况下,野生型 V. fischeri 在血红素上的生长速度比 hnoX 缺失突变体慢。宿主定植研究表明,hnoX 突变体在最初定植鱿鱼宿主时的效率也比野生型高 10 倍;同样,在混合接种中,它在 24 小时后平均比野生型菌株竞争优势高出 16 倍。然而,过量的血红素或铁会逆转这种优势。突变体在定植铁限制的光器官组织中的优势至少部分归因于其更大的能力从宿主中获取宿主衍生的血红素。我们的数据表明,V. fischeri 通常通过 H-NOX(Vf)感知宿主产生的 NO 信号,并在光器官共生的早期阶段调节其铁摄取能力的表达。