Division of Biology and Biomedical Sciences, Center for Computational Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8183-8. doi: 10.1073/pnas.0911107107. Epub 2010 Apr 19.
Intrinsically disordered proteins (IDPs) adopt heterogeneous ensembles of conformations under physiological conditions. Understanding the relationship between amino acid sequence and conformational ensembles of IDPs can help clarify the role of disorder in physiological function. Recent studies revealed that polar IDPs favor collapsed ensembles in water despite the absence of hydrophobic groups--a result that holds for polypeptide backbones as well. By studying highly charged polypeptides, a different archetype of IDPs, we assess how charge content modulates the intrinsic preference of polypeptide backbones for collapsed structures. We characterized conformational ensembles for a set of protamines in aqueous milieus using molecular simulations and fluorescence measurements. Protamines are arginine-rich IDPs involved in the condensation of chromatin during spermatogenesis. Simulations based on the ABSINTH implicit solvation model predict the existence of a globule-to-coil transition, with net charge per residue serving as the discriminating order parameter. The transition is supported by quantitative agreement between simulation and experiment. Local conformational preferences partially explain the observed trends of polymeric properties. Our results lead to the proposal of a schematic protein phase diagram that should enable prediction of polymeric attributes for IDP conformational ensembles using easily calculated physicochemical properties of amino acid sequences. Although sequence composition allows the prediction of polymeric properties, interresidue contact preferences of protamines with similar polymeric attributes suggest that certain details of conformational ensembles depend on the sequence. This provides a plausible mechanism for specificity in the functions of IDPs.
天然无序蛋白质(IDPs)在生理条件下采用多种构象的集合。理解氨基酸序列与 IDPs 的构象集合之间的关系有助于阐明无序在生理功能中的作用。最近的研究表明,尽管没有疏水区,但极性 IDPs 在水中有利于折叠的集合——这一结果适用于多肽骨架。通过研究带高电荷的多肽,一种不同的 IDP 原型,我们评估了电荷含量如何调节多肽骨架对折叠结构的固有偏好。我们使用分子模拟和荧光测量方法研究了一组鱼精蛋白在水介质中的构象集合。鱼精蛋白是富含精氨酸的 IDP,参与精子发生过程中染色质的浓缩。基于 ABSINTH 隐式溶剂化模型的模拟预测存在一个球到线圈的转变,净电荷/残基作为区分的序参数。模拟与实验之间的定量一致性支持了这种转变。局部构象偏好部分解释了观察到的聚合性质趋势。我们的结果导致提出了一个示意性的蛋白质相图,该相图应该能够使用氨基酸序列的易于计算的物理化学性质来预测 IDP 构象集合的聚合属性。虽然序列组成允许预测聚合性质,但具有相似聚合属性的鱼精蛋白的残基间相互作用偏好表明,构象集合的某些细节取决于序列。这为 IDPs 功能的特异性提供了一个合理的机制。