Fuxreiter Monika, Tompa Peter, Simon István, Uversky Vladimir N, Hansen Jeffrey C, Asturias Francisco J
Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina ut 29, H-1113, H-1518 Budapest, Hungary.
Nat Chem Biol. 2008 Dec;4(12):728-37. doi: 10.1038/nchembio.127.
Transcriptional control requires the spatially and temporally coordinated action of many macromolecular complexes. Chromosomal proteins, transcription factors, co-activators and components of the general transcription machinery, including RNA polymerases, often use structurally or stoichiometrically ill-defined regions for interactions that convey regulatory information in processes ranging from chromatin remodeling to mRNA processing. Determining the functional significance of intrinsically disordered protein regions and developing conceptual models of their action will help to illuminate their key role in transcription regulation. Complexes comprising disordered regions often display short recognition elements embedded in flexible and sequentially variable environments that can lead to structural and functional malleability. This provides versatility to recognize multiple targets having different structures, facilitate conformational rearrangements and physically communicate with many partners in response to environmental changes. All these features expand the capacities of ordered complexes and give rise to efficient regulatory mechanisms.
转录控制需要许多大分子复合物在空间和时间上的协同作用。染色体蛋白、转录因子、共激活因子以及通用转录机制的组成部分,包括RNA聚合酶,常常利用结构或化学计量定义不明确的区域进行相互作用,这些相互作用在从染色质重塑到mRNA加工等过程中传递调控信息。确定内在无序蛋白质区域的功能意义并建立其作用的概念模型,将有助于阐明它们在转录调控中的关键作用。包含无序区域的复合物通常显示出嵌入灵活且序列可变环境中的短识别元件,这可能导致结构和功能的可塑性。这提供了识别具有不同结构的多个靶标的多功能性,促进构象重排,并响应环境变化与许多伙伴进行物理通讯。所有这些特征扩展了有序复合物的能力,并产生了高效的调控机制。