Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
PLoS One. 2010 Apr 13;5(4):e10168. doi: 10.1371/journal.pone.0010168.
Transposable elements (such as the P-element and piggyBac) have been used to introduce thousands of transgenic constructs into the Drosophila genome. These transgenic constructs serve many roles, from assaying gene/cell function, to controlling chromosome arm rearrangement. Knowing the precise genomic insertion site for the transposable element is often desired. This enables identification of genomic enhancer regions trapped by an enhancer trap, identification of the gene mutated by a transposon insertion, or simplifying recombination experiments. The most commonly used transgene mapping method is inverse PCR (iPCR). Although usually effective, limitations with iPCR hinder its ability to isolate flanking genomic DNA in complex genomic loci, such as those that contain natural transposons. Here we report the adaptation of the splinkerette PCR (spPCR) method for the isolation of flanking genomic DNA of any P-element or piggyBac. We report a simple and detailed protocol for spPCR. We use spPCR to 1) map a GAL4 enhancer trap located inside a natural transposon, pinpointing a master regulatory region for olfactory neuron expression in the brain; and 2) map all commonly used centromeric FRT insertion sites. The ease, efficiency, and efficacy of spPCR could make it a favored choice for the mapping of transposable element in Drosophila.
转座元件(如 P 元件和 piggyBac)已被用于将数千种转基因构建体引入果蝇基因组。这些转基因构建体具有多种作用,从检测基因/细胞功能到控制染色体臂重排。通常需要知道转座元件的精确基因组插入位点。这可以识别被增强子陷阱捕获的基因组增强子区域,识别由转座子插入突变的基因,或简化重组实验。最常用的转基因作图方法是反向 PCR(iPCR)。尽管通常有效,但 iPCR 的局限性限制了其在复杂基因组位置(如含有天然转座子的位置)中分离侧翼基因组 DNA 的能力。在这里,我们报告了 splinkerette PCR(spPCR)方法的适应性,用于分离任何 P 元件或 piggyBac 的侧翼基因组 DNA。我们报告了 spPCR 的一个简单而详细的方案。我们使用 spPCR 来 1)定位位于天然转座子内部的 GAL4 增强子陷阱,确定大脑中嗅觉神经元表达的主调控区域;2)定位所有常用的着丝粒 FRT 插入位点。spPCR 的简便性、效率和有效性可能使其成为在果蝇中转座元件作图的首选方法。