Suppr超能文献

肌萎缩侧索硬化症与兴奋毒性:从病理机制到治疗靶点。

Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target.

机构信息

Laboratory of Neurobiology, Experimental Neurology, University of Leuven and Vesalius Research Center, VIB, Leuven, Belgium.

出版信息

CNS Neurol Disord Drug Targets. 2010 Jul;9(3):297-304. doi: 10.2174/187152710791292576.

Abstract

Glutamate-induced excitotoxicity is responsible for neuronal death in acute neurological conditions as well as in chronic neurodegeneration. In this review, we give an overview of the contribution of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis (ALS). The selective motor neuron death that is the hallmark of this neurodegenerative disease seems to be related to a number of intrinsic characteristics of these neurons. Most of these characteristics relate to calcium entry and calcium handling in the motor neurons as intracellular free calcium concentrations increase quickly due to a high glutamate-induced calcium influx in combination with a low calcium buffering capacity. The high calcium influx is because of the presence of GluR2 lacking, calcium-permeable AMPA receptors while a low expression of calcium binding proteins explains the low calcium buffering capacity. In the absence of these proteins, mitochondria play an important role to remove calcium from the cytoplasm. While all of these characteristics make at least a subpopulation of motor neurons intrinsically very prone to AMPA receptor mediated excitotoxicity, this vulnerability is further increased by the disease process. Mutated genes as well as unknown factors do not only influence the intrinsic characteristics of the motor neurons, but also the properties of the surrounding astrocytes. In conclusion, excitotoxicity remains an intriguing pathological pathway that could not only explain the selectivity of the motor neuron death but also the role of surrounding non-neuronal cells in ALS. In addition, excitotoxicity is also an interesting drug-able target as indicated by the only FDA-approved drug, riluzole, as well as by a number of ongoing clinical trials.

摘要

谷氨酸诱导的兴奋性毒性是急性神经病症以及慢性神经退行性变中神经元死亡的原因。在这篇综述中,我们概述了兴奋性毒性在肌萎缩侧索硬化症(ALS)发病机制中的作用。这种神经退行性疾病的标志性特征是选择性运动神经元死亡,这似乎与这些神经元的许多内在特征有关。这些特征大多与运动神经元中的钙内流和钙处理有关,因为由于谷氨酸诱导的钙内流增加,再加上钙缓冲能力低,细胞内游离钙浓度迅速增加。高钙内流是由于存在缺乏 GluR2、钙通透性 AMPA 受体,而钙结合蛋白表达低则解释了钙缓冲能力低的原因。在这些蛋白缺失的情况下,线粒体在从细胞质中去除钙方面发挥着重要作用。虽然所有这些特征至少使一部分运动神经元内在地非常容易受到 AMPA 受体介导的兴奋性毒性的影响,但疾病过程进一步增加了这种脆弱性。突变基因以及未知因素不仅影响运动神经元的内在特征,还影响周围星形胶质细胞的特性。总之,兴奋性毒性仍然是一个有趣的病理途径,它不仅可以解释运动神经元死亡的选择性,还可以解释周围非神经元细胞在 ALS 中的作用。此外,兴奋性毒性也是一个有趣的可治疗靶点,这一点已被唯一获得 FDA 批准的药物利鲁唑以及许多正在进行的临床试验所证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验