Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W
Neurobiology, Campus Gasthuisberg O&N2, PB1022, Herestraat 49, B-3000 Leuven, Belgium.
Biochim Biophys Acta. 2006 Nov-Dec;1762(11-12):1068-82. doi: 10.1016/j.bbadis.2006.05.002. Epub 2006 May 17.
Unfortunately and despite all efforts, amyotrophic lateral sclerosis (ALS) remains an incurable neurodegenerative disorder characterized by the progressive and selective death of motor neurons. The cause of this process is mostly unknown, but evidence is available that excitotoxicity plays an important role. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS. The most important one is that the only drug proven to slow the disease process in humans, riluzole, has anti-excitotoxic properties. Moreover, consumption of excitotoxins can give rise to selective motor neuron death, indicating that motor neurons are extremely sensitive to excessive stimulation of glutamate receptors. We will summarize the intrinsic properties of motor neurons that could render these cells particularly sensitive to excitotoxicity. Most of these characteristics relate to the way motor neurons handle Ca(2+), as they combine two exceptional characteristics: a low Ca(2+)-buffering capacity and a high number of Ca(2+)-permeable AMPA receptors. These properties most likely are essential to perform their normal function, but under pathological conditions they could become responsible for the selective death of motor neurons. In order to achieve this worst-case scenario, additional factors/mechanisms could be required. In 1 to 2% of the ALS patients, mutations in the SOD1 gene could shift the balance from normal motor neuron excitation to excitotoxicity by decreasing glutamate uptake in the surrounding astrocytes and/or by interfering with mitochondrial function. We will discuss point by point these different pathogenic mechanisms that could give rise to classical and/or slow excitotoxicity leading to selective motor neuron death.
不幸的是,尽管付出了种种努力,肌萎缩侧索硬化症(ALS)仍然是一种无法治愈的神经退行性疾病,其特征是运动神经元进行性和选择性死亡。这个过程的原因大多不明,但有证据表明兴奋性毒性起着重要作用。在这篇综述中,我们将概述支持兴奋性毒性参与ALS的论据。最重要的一点是,唯一被证明能减缓人类疾病进程的药物利鲁唑具有抗兴奋性毒性特性。此外,食用兴奋性毒素可导致选择性运动神经元死亡,这表明运动神经元对谷氨酸受体的过度刺激极为敏感。我们将总结运动神经元的内在特性,这些特性可能使这些细胞对兴奋性毒性特别敏感。其中大多数特征与运动神经元处理Ca(2+)的方式有关,因为它们兼具两个特殊特征:低Ca(2+)缓冲能力和大量Ca(2+)通透的AMPA受体。这些特性很可能对其正常功能至关重要,但在病理条件下,它们可能导致运动神经元的选择性死亡。为了达到这种最坏的情况,可能还需要其他因素/机制。在1%至2%的ALS患者中,SOD1基因突变可能通过减少周围星形胶质细胞对谷氨酸的摄取和/或干扰线粒体功能,将平衡从正常的运动神经元兴奋转变为兴奋性毒性。我们将逐点讨论这些不同的致病机制,它们可能导致经典和/或缓慢的兴奋性毒性,从而导致选择性运动神经元死亡。