Suppr超能文献

突起和肌动蛋白组装与层状收缩结构的组织相关联。

Protrusion and actin assembly are coupled to the organization of lamellar contractile structures.

机构信息

Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Exp Cell Res. 2010 Aug 1;316(13):2027-41. doi: 10.1016/j.yexcr.2010.04.011. Epub 2010 Apr 18.

Abstract

Directed cell migration requires continuous cycles of protrusion of the leading edge and contraction to pull up the cell rear. How these spatially distributed processes are coordinated to maintain a state of persistent protrusion remains unknown. During wound healing responses of epithelial sheets, cells along the wound edge display two distinct morphologies: 'leader cells' exhibit persistent edge protrusions, while the greater majority of 'follower cells' randomly cycle between protrusion and retraction. Here, we exploit the heterogeneity in cell morphodynamic behaviors to deduce the requirements in terms of cytoskeleton dynamics for persistent and sporadic protrusion events. We used quantitative Fluorescent Speckle Microscopy (qFSM) to compare rates of F-actin assembly and flow relative to the local protrusion and retraction dynamics of the leading edge. Persistently protruding cells are characterized by contractile actomyosin structures that align with the direction of migration, with converging F-actin flows interpenetrating over a wide band in the lamella. Conversely, non-persistent protruders have their actomyosin structures aligned perpendicular to the axis of migration, and are characterized by prominent F-actin retrograde flows that end into transverse arcs. Analysis of F-actin kinetics in the lamellipodia showed that leader cells have three-fold higher assembly rates when compared to followers. To further investigate a putative relationship between actomyosin contraction and F-actin assembly, myosin II was inhibited by blebbistatin. Treated cells at the wound edge adopted a homogeneously persistent protrusion behavior, with rates matching those of leader cells. Surprisingly, we found that disintegration of actomyosin structures led to a significant decrease in F-actin assembly. Our data suggests that persistent protrusion in these cells is achieved by a reduction in overall F-actin retrograde flow, with lower assembly rates now sufficient to propel forward the leading edge. Based on our data we propose that differences in the protrusion persistence of leaders and followers originate in the distinct actomyosin contraction modules that differentially regulate leading edge protrusion-promoting F-actin assembly, and retraction-promoting retrograde flow.

摘要

定向细胞迁移需要不断地突出前缘并收缩以拉动细胞后端,那么这些空间分布的过程如何协调以维持持续突出的状态仍然未知。在上皮片的伤口愈合反应中,沿着伤口边缘的细胞表现出两种截然不同的形态:“领导者细胞”表现出持续的边缘突出,而大多数“追随者细胞”则随机地在突出和缩回之间循环。在这里,我们利用细胞形态动力学行为的异质性,推导出持续和偶发性突出事件对细胞骨架动力学的要求。我们使用定量荧光斑点显微镜 (qFSM) 比较了 F-肌动蛋白组装和流动相对于前缘局部突出和缩回动力学的速率。持续突出的细胞的特征是收缩性肌动球蛋白结构与迁移方向一致,汇聚的 F-肌动蛋白流在薄片中广泛的带中相互渗透。相反,非持续突出的突出物的肌动球蛋白结构与迁移轴垂直,并且以突出的 F-肌动蛋白逆行流为特征,这些逆行流最终形成横向弧。对片状伪足中的 F-肌动蛋白动力学的分析表明,与追随者相比,领导者细胞的组装速率高 3 倍。为了进一步研究肌球蛋白 II 收缩与 F-肌动蛋白组装之间的潜在关系,我们用 blebbistatin 抑制肌球蛋白 II。处于伤口边缘的处理细胞采用均匀的持续突出行为,其速率与领导者细胞匹配。令人惊讶的是,我们发现肌动球蛋白结构的解体导致 F-肌动蛋白组装显著减少。我们的数据表明,这些细胞中的持续突出是通过整体 F-肌动蛋白逆行流的减少来实现的,较低的组装速率现在足以推动前缘前进。基于我们的数据,我们提出领导者和追随者的突出持久性差异源自于不同的肌球蛋白收缩模块,这些模块分别调节前缘促进 F-肌动蛋白组装的突出和促进逆行流的突出。

相似文献

1
Protrusion and actin assembly are coupled to the organization of lamellar contractile structures.
Exp Cell Res. 2010 Aug 1;316(13):2027-41. doi: 10.1016/j.yexcr.2010.04.011. Epub 2010 Apr 18.
4
Two distinct actin networks drive the protrusion of migrating cells.
Science. 2004 Sep 17;305(5691):1782-6. doi: 10.1126/science.1100533.
5
Reorganization of the actin cytoskeleton in the protruding lamellae of human fibroblasts.
Cell Motil Cytoskeleton. 2001 Sep;50(1):13-32. doi: 10.1002/cm.1038.
7
Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.
PLoS One. 2014 Apr 7;9(4):e94330. doi: 10.1371/journal.pone.0094330. eCollection 2014.
8
Fluctuations of intracellular forces during cell protrusion.
Nat Cell Biol. 2008 Dec;10(12):1393-400. doi: 10.1038/ncb1797. Epub 2008 Nov 16.
9
Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9660-5. doi: 10.1073/pnas.0300552101. Epub 2004 Jun 21.
10
A mechanism of leading-edge protrusion in the absence of Arp2/3 complex.
Mol Biol Cell. 2015 Mar 1;26(5):901-12. doi: 10.1091/mbc.E14-07-1250. Epub 2015 Jan 7.

引用本文的文献

2
Amoeboid cells undergo durotaxis with soft end polarized NMIIA.
Elife. 2024 Dec 13;13:RP96821. doi: 10.7554/eLife.96821.
3
Inference of long-range cell-cell force transmission from ECM remodeling fluctuations.
Commun Biol. 2023 Aug 3;6(1):811. doi: 10.1038/s42003-023-05179-1.
4
TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.
Sci Rep. 2018 May 8;8(1):7248. doi: 10.1038/s41598-018-25337-4.
5
Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration.
J Cell Biol. 2017 Jun 5;216(6):1543-1556. doi: 10.1083/jcb.201609095. Epub 2017 May 16.
6
Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge.
Curr Biol. 2016 May 23;26(10):1312-8. doi: 10.1016/j.cub.2016.03.028. Epub 2016 Apr 21.
7
Dynamic reorganization of the actin cytoskeleton.
F1000Res. 2015 Oct 1;4. doi: 10.12688/f1000research.6374.1. eCollection 2015.
8
Seeds of Locally Aligned Motion and Stress Coordinate a Collective Cell Migration.
Biophys J. 2015 Dec 15;109(12):2492-2500. doi: 10.1016/j.bpj.2015.11.001.
9
Distinct Roles of Cytoskeletal Components in Immunological Synapse Formation and Directed Secretion.
J Immunol. 2015 Nov 1;195(9):4117-25. doi: 10.4049/jimmunol.1402175. Epub 2015 Sep 21.
10
ERK reinforces actin polymerization to power persistent edge protrusion during motility.
Sci Signal. 2015 May 19;8(377):ra47. doi: 10.1126/scisignal.aaa8859.

本文引用的文献

1
Coordination of Rho GTPase activities during cell protrusion.
Nature. 2009 Sep 3;461(7260):99-103. doi: 10.1038/nature08242. Epub 2009 Aug 19.
4
Fluctuations of intracellular forces during cell protrusion.
Nat Cell Biol. 2008 Dec;10(12):1393-400. doi: 10.1038/ncb1797. Epub 2008 Nov 16.
5
Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle.
J Cell Biol. 2008 Aug 25;182(4):631-9. doi: 10.1083/jcb.200801105. Epub 2008 Aug 18.
7
Regulation of actin filament assembly by Arp2/3 complex and formins.
Annu Rev Biophys Biomol Struct. 2007;36:451-77. doi: 10.1146/annurev.biophys.35.040405.101936.
8
Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk.
Nat Cell Biol. 2007 Mar;9(3):299-309. doi: 10.1038/ncb1540. Epub 2007 Feb 18.
9
Lamellipodial actin mechanically links myosin activity with adhesion-site formation.
Cell. 2007 Feb 9;128(3):561-75. doi: 10.1016/j.cell.2006.12.039.
10
Differential transmission of actin motion within focal adhesions.
Science. 2007 Jan 5;315(5808):111-5. doi: 10.1126/science.1135085.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验