Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel.
Commun Biol. 2023 Aug 3;6(1):811. doi: 10.1038/s42003-023-05179-1.
Cells sense, manipulate and respond to their mechanical microenvironment in a plethora of physiological processes, yet the understanding of how cells transmit, receive and interpret environmental cues to communicate with distant cells is severely limited due to lack of tools to quantitatively infer the complex tangle of dynamic cell-cell interactions in complicated environments. We present a computational method to systematically infer and quantify long-range cell-cell force transmission through the extracellular matrix (cell-ECM-cell communication) by correlating ECM remodeling fluctuations in between communicating cells and demonstrating that these fluctuations contain sufficient information to define unique signatures that robustly distinguish between different pairs of communicating cells. We demonstrate our method with finite element simulations and live 3D imaging of fibroblasts and cancer cells embedded in fibrin gels. While previous studies relied on the formation of a visible fibrous 'band' extending between cells to inform on mechanical communication, our method detected mechanical propagation even in cases where visible bands never formed. We revealed that while contractility is required, band formation is not necessary, for cell-ECM-cell communication, and that mechanical signals propagate from one cell to another even upon massive reduction in their contractility. Our method sets the stage to measure the fundamental aspects of intercellular long-range mechanical communication in physiological contexts and may provide a new functional readout for high content 3D image-based screening. The ability to infer cell-ECM-cell communication using standard confocal microscopy holds the promise for wide use and democratizing the method.
细胞在诸多生理过程中感知、操作和响应其机械微环境,但由于缺乏工具来定量推断复杂环境中动态的细胞间相互作用的复杂网络,因此对于细胞如何传递、接收和解释环境线索以与远距离细胞进行通信的理解非常有限。我们提出了一种计算方法,通过关联在通信细胞之间的细胞外基质(细胞-ECM-细胞通讯)的重塑波动,来系统地推断和量化长程细胞间的力传递,并证明这些波动包含足够的信息来定义独特的特征,从而可以稳健地区分不同的通信细胞对。我们使用有限元模拟和嵌入纤维蛋白凝胶中的成纤维细胞和癌细胞的活 3D 成像来演示我们的方法。虽然以前的研究依赖于在细胞之间形成可见的纤维“带”来传递机械信号,但我们的方法即使在从未形成可见带的情况下也能检测到机械传播。我们揭示了虽然收缩性是必需的,但对于细胞-ECM-细胞通讯,带的形成不是必需的,并且即使在它们的收缩性大大降低的情况下,机械信号也会从一个细胞传播到另一个细胞。我们的方法为在生理环境中测量细胞间长程机械通讯的基本方面奠定了基础,并且可以为基于高内涵 3D 图像的筛选提供新的功能读出。使用标准共聚焦显微镜推断细胞-ECM-细胞通讯的能力有望得到广泛应用,并使该方法民主化。