Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo, Italy.
EMBO J. 2010 Jun 2;29(11):1889-902. doi: 10.1038/emboj.2010.72. Epub 2010 Apr 20.
Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin-binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n-cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long-term potentiation and long-term depression. Loss of n-cofilin-mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n-cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability.
神经元可塑性是学习、记忆和复杂行为的重要过程。人们认为突触后隔室中肌动蛋白细胞骨架的快速重塑对于突触可塑性具有重要功能。然而,涉及的肌动蛋白结合蛋白以及将肌动蛋白动力学与突触后生理学在体内联系起来的分子机制尚不清楚。在这里,我们表明肌动蛋白丝解聚蛋白 n-cofilin 控制树突棘形态和突触后参数,如晚期长时程增强和长时程抑制。特定于大脑前部的 n-cofilin 介导的突触肌动蛋白动力学的丧失会导致所有类型的联想学习受损,而探索性学习不受影响。我们为 n-cofilin 在突触可塑性和控制 extrasynaptic 兴奋性 AMPA 受体扩散中的新功能提供了证据。这些结果表明肌动蛋白动力学在联想学习和突触后受体可用性中具有关键功能。