Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
Knee Surg Sports Traumatol Arthrosc. 2010 Sep;18(9):1277-81. doi: 10.1007/s00167-010-1134-0. Epub 2010 Apr 21.
The meniscofemoral ligament (MFL) is a major structure in the posterior aspect of the porcine knee together with the posterior cruciate ligament (PCL). While the porcine knee is a frequently used animal model for biomechanical evaluation of PCL reconstruction techniques, the contribution of the MFL to stability of the porcine knee is not well understood. The purpose of this study is (1) to evaluate the kinematics of the knee after sequential cutting of the PCL and MFL and (2) to determine the in situ forces of the PCL and MFL in response to a posterior tibial load of 89 N using the robotic/universal force-moment sensor system from 15 degrees to 90 degrees of knee flexion. Ten porcine knees were used in this study. The magnitude of posterior tibial translation under a posterior tibial load was significantly increased (P < 0.01) after sequential transection of the PCL and the MFL at each testing angle compared to the intact condition. The in situ force of the PCL was highest at 60 degrees of flexion (82.3 +/- 8.6 N) and lowest at 15 degrees of flexion (45.1 +/- 15.9 N). The in situ force of the MFL was highest at 15 degrees of flexion (24.3 +/- 6.5 N) and lowest at 90 degrees of flexion (12.9 +/- 10.5 N). The findings in this study revealed a biomechanical contribution of the MFL as the secondary restraint to the posterior tibial translation in conjunction with the PCL especially near full extension.
半月板股骨韧带(MFL)是猪膝关节后关节的主要结构,与后十字韧带(PCL)一起。虽然猪膝关节是用于评估 PCL 重建技术的生物力学的常用动物模型,但 MFL 对猪膝关节稳定性的贡献尚不清楚。本研究的目的是:(1)评估 PCL 和 MFL 序贯切断后膝关节的运动学;(2)使用机器人/通用力-力矩传感器系统,从 15 度到 90 度膝关节屈曲,确定 PCL 和 MFL 在 89N 胫骨后负荷下的原位力。本研究使用了 10 个猪膝关节。与完整状态相比,在每个测试角度下,PCL 和 MFL 序贯切断后,胫骨后向平移的幅度明显增加(P<0.01)。PCL 的原位力在屈曲 60 度时最高(82.3±8.6N),在屈曲 15 度时最低(45.1±15.9N)。MFL 的原位力在屈曲 15 度时最高(24.3±6.5N),在屈曲 90 度时最低(12.9±10.5N)。本研究的结果揭示了 MFL 的生物力学贡献,即与 PCL 一起作为后胫骨平移的次要限制,尤其是在接近完全伸展时。