Suppr超能文献

溶解有机物的耦合光化学和生物化学氧化中的单线态氧。

Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.

机构信息

Department of Ecology, Evolution and Behavior and Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA.

出版信息

Environ Sci Technol. 2010 May 15;44(10):3683-9. doi: 10.1021/es902989y.

Abstract

Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.

摘要

溶解有机质(DOM)是一个重要的(>700 Pg)全球碳库。陆地 DOM 向内陆水域和沿海地区的输送代表了从陆地向水中输送还原碳的最大通量(215 Tg yr(-1))(Meybeck,M. Am. J. Sci. 1983, 282, 401-450)。依赖于光化学和生物化学过程的 DOM 氧化,在很大程度上控制了进入地表水的 DOM 的命运。活性氧(ROS)被认为在 DOM 的光氧化中发挥了重要作用,因为它们可能氧化 DOM 中无法通过阳光直接光化学降解的部分。我们通过用(18)O 标记氧的质谱法,跟踪光化学产生的单线态氧((1)O(2))对 DOM 的影响,以了解(1)O(2)介导的 DOM 转化如何导致 DOM 生物利用度的改变。归因于(1)O(2)的 DOM 的光化学氧气吸收随着 DOM 浓度的增加而增加,但即使在非常高的 DOM 浓度下,它仍然是光化学氧气吸收的少数贡献者。当 DOM 样品暴露于(1)O(2)生成条件(孟加拉玫瑰红和可见光)时,观察到 DOM 成分中氧含量较高的增加,并检测到 H(2)O(2)的释放。H(2)O(2)和(1)O(2)处理的 DOM 的差异效应表明,与未改性的 DOM 相比,(1)O(2)处理的 DOM 导致细菌生长速度较慢。这项研究的结果表明,单线态氧与 DOM 之间的反应的净效应可能是产生部分氧化的底物,相应地降低潜在的生物能量产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验