Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Biointerphases. 2008 Sep;3(3):FD12-22. doi: 10.1116/1.2994688.
The implementation of surface plasmon-enhanced fluorescence spectroscopy (SPFS) to surface plasmon resonance (SPR) biosensors enables increasing their sensitivity by several orders of magnitude. In SPR-based biosensors, surface plasmons probe the binding of target molecules contained in a liquid sample by their affinity partners attached to a metallic sensor surface. SPR biosensors relying on the detection of refractive index changes allow for direct observation of the binding of large and medium size molecules that produces sufficiently large refractive index changes. In SPR biosensors exploiting SPFS, the capture of fluorophore-labeled molecules to the sensor surface is observed by the detection of fluorescence light emitted from the surface. This technique takes advantage of the enhanced intensity of electromagnetic field accompanied with the resonant excitation of surface plasmons. The interaction with surface plasmons can greatly increase the measured fluorescence signal through enhancing the excitation rate of fluorophores and by more efficient collecting of fluorescence light. SPFS-based biosensors were shown to enable the analysis of samples with extremely low analyte concentrations and the detection of small molecules. In this review, we describe the fundamental principles, implementations, and current state of the art applications of SPFS biosensors. This review focuses on SPFS-based biosensors employing the excitation of surface plasmons on continuous metal-dielectric interfaces.
表面等离激元增强荧光光谱(SPFS)在表面等离激元共振(SPR)生物传感器中的应用使得其灵敏度提高了几个数量级。在基于 SPR 的生物传感器中,表面等离激元通过与附着在金属传感器表面的亲和配体结合来探测液体样品中目标分子的结合。基于 SPR 的生物传感器依赖于折射率变化的检测,允许直接观察到结合的大分子量和中分子量分子,因为它们产生足够大的折射率变化。在利用 SPFS 的 SPR 生物传感器中,通过检测从表面发射的荧光光,可以观察到荧光标记的分子到传感器表面的捕获。该技术利用了伴随着表面等离激元共振激发的电磁场强度增强。与表面等离激元的相互作用可以通过增强荧光团的激发速率和更有效地收集荧光光来大大增加测量的荧光信号。已经证明,基于 SPFS 的生物传感器能够分析具有极低分析物浓度的样品,并检测小分子。在这篇综述中,我们描述了 SPFS 生物传感器的基本原理、实现和最新应用。这篇综述重点介绍了在连续金属-电介质界面上激发表面等离激元的基于 SPFS 的生物传感器。