Kant Krishna, Beeram Reshma, Cao Yi, Dos Santos Paulo S S, González-Cabaleiro Lara, García-Lojo Daniel, Guo Heng, Joung Younju, Kothadiya Siddhant, Lafuente Marta, Leong Yong Xiang, Liu Yiyi, Liu Yuxiong, Moram Sree Satya Bharati, Mahasivam Sanje, Maniappan Sonia, Quesada-González Daniel, Raj Divakar, Weerathunge Pabudi, Xia Xinyue, Yu Qian, Abalde-Cela Sara, Alvarez-Puebla Ramon A, Bardhan Rizia, Bansal Vipul, Choo Jaebum, Coelho Luis C C, de Almeida José M M M, Gómez-Graña Sergio, Grzelczak Marek, Herves Pablo, Kumar Jatish, Lohmueller Theobald, Merkoçi Arben, Montaño-Priede José Luis, Ling Xing Yi, Mallada Reyes, Pérez-Juste Jorge, Pina María P, Singamaneni Srikanth, Soma Venugopal Rao, Sun Mengtao, Tian Limei, Wang Jianfang, Polavarapu Lakshminarayana, Santos Isabel Pastoriza
CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India.
Nanoscale Horiz. 2024 Nov 19;9(12):2085-2166. doi: 10.1039/d4nh00226a.
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
在现代纳米科学和纳米技术的发展过程中,等离子体纳米颗粒(NPs)在胶体合成、对纳米晶体生长机制的一般理解以及它们在广泛应用中的影响等方面发挥了重要作用。由于局域表面等离子体共振(LSPR),它们呈现出强烈的可见颜色,而LSPR取决于其尺寸、形状、组成以及周围的介电环境。在共振激发下,等离子体NPs的LSPR会导致其表面附近的场强增强,从而增强各种光与物质的相互作用。等离子体NPs的这些独特光学性质已被用于设计化学和生物传感器。在过去几十年中,胶体等离子体NPs已通过LSPR位移(比色法)、表面增强拉曼散射、表面增强荧光和手性光学活性在传感应用中得到了广泛应用。尽管胶体等离子体NPs已处于纳米生物传感器的前沿,但要实现用于日常生活中常规使用的基于等离子体NP的传感器套件,仍有几个重要挑战需要解决。在这篇全面的综述中,来自不同学科(胶体与分析化学、生物学、物理学和医学)的研究人员齐聚一堂,从不同的传感平台、对传感机制的理解、不同的化学和生物分析物以及预期的未来技术等方面总结了基于等离子体NP的传感器的过去、现在和未来。这篇综述有望指导目前在该领域工作的研究人员,并激励后代科学家加入这个引人入胜的研究领域及其分支。