Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA.
Biophys J. 2010 Apr 21;98(8):1375-84. doi: 10.1016/j.bpj.2009.11.054.
During cell motion on a substratum, eukaryotic cells project sheetlike lamellipodia which contain a dynamically remodeling three-dimensional actin mesh. A number of regulatory proteins and subtle mechano-chemical couplings determine the lamellipodial protrusion dynamics. To study these processes, we constructed a microscopic physico-chemical computational model, which incorporates a number of fundamental reaction and diffusion processes, treated in a fully stochastic manner. Our work sheds light on the way lamellipodial protrusion dynamics is affected by the concentrations of actin and actin-binding proteins. In particular, we found that protrusion speed saturates at very high actin concentrations, where filament nucleation does not keep up with protrusion. This results in sparse filamentous networks, and, consequently, high resistance forces on individual filaments. We also observed maxima in lamellipodial growth rates as a function of Arp2/3, a nucleating protein, and capping proteins. We provide detailed physical explanations behind these effects. In particular, our work supports the actin-funneling-hypothesis explanation of protrusion speed enhancement at low capping protein concentrations. Our computational results are in agreement with a number of related experiments. Overall, our work emphasizes that elongation and nucleation processes work highly cooperatively in determining the optimal protrusion speed for the actin mesh in lamellipodia.
在细胞在基质上运动时,真核细胞会伸出片状的伪足,其中包含动态重塑的三维肌动蛋白网格。许多调节蛋白和微妙的力学化学耦联决定了伪足的伸出动力学。为了研究这些过程,我们构建了一个微观物理化学计算模型,该模型包含了许多基本的反应和扩散过程,并以完全随机的方式进行处理。我们的工作揭示了伪足伸出动力学受肌动蛋白和肌动蛋白结合蛋白浓度影响的方式。特别是,我们发现,在肌动蛋白浓度非常高的情况下,突起速度会达到饱和,此时丝状核不会跟上突起的速度。这导致丝状网络稀疏,因此单个丝状纤维的阻力很大。我们还观察到作为 Arp2/3(一种成核蛋白)和盖帽蛋白的函数的伪足生长速率的最大值。我们为这些效应提供了详细的物理解释。特别是,我们的工作支持了在低盖帽蛋白浓度下突起速度增强的肌动蛋白集流假说解释。我们的计算结果与许多相关实验一致。总的来说,我们的工作强调了在确定伪足中肌动蛋白网格的最佳伸出速度时,伸长和核形成过程高度协作。