School of Chemistry, University of Bristol, Bristol, United Kingdom.
Biophys J. 2010 Apr 21;98(8):1668-76. doi: 10.1016/j.bpj.2009.12.4309.
Interest in the design of peptide-based fibrous materials is growing because it opens possibilities to explore fundamental aspects of peptide self-assembly and to exploit the resulting structures--for example, as scaffolds for tissue engineering. Here we investigate the assembly pathway of self-assembling fibers, a rationally designed alpha-helical coiled-coil system comprising two peptides that assemble on mixing. The dimensions spanned by the peptides and final structures (nanometers to micrometers), and the timescale over which folding and assembly occur (seconds to hours), necessitate a multi-technique approach employing spectroscopy, analytical ultracentrifugation, electron and light microscopy, and protein design to produce a physical model. We show that fibers form via a nucleation and growth mechanism. The two peptides combine rapidly (in less than seconds) to form sticky ended, partly helical heterodimers. A lag phase follows, on the order of tens of minutes, and is concentration-dependent. The critical nucleus comprises six to eight partially folded dimers. Growth is then linear in dimers, and subsequent fiber growth occurs in hours through both elongation and thickening. At later times (several hours), fibers grow predominantly through elongation. This kinetic, biomolecular description of the folding-and-assembly process allows the self-assembling fiber system to be manipulated and controlled, which we demonstrate through seeding experiments to obtain different distributions of fiber lengths. This study and the resulting mechanism we propose provide a potential route to achieving temporal control of functional fibers with future applications in biotechnology and nanoscale science and technology.
人们对基于肽的纤维材料设计越来越感兴趣,因为这为探索肽自组装的基本方面以及利用所得结构提供了可能性——例如,作为组织工程的支架。在这里,我们研究了自组装纤维的组装途径,这是一种由两个混合时会组装的肽组成的合理设计的α螺旋卷曲螺旋系统。肽的尺寸和最终结构(纳米到微米)以及折叠和组装发生的时间尺度(秒到小时)需要采用多种技术方法,包括光谱学、分析超速离心、电子和光学显微镜以及蛋白质设计来制作物理模型。我们表明,纤维是通过成核和生长机制形成的。这两种肽迅速(不到一秒钟)结合形成粘性末端的部分螺旋异二聚体。随后是一个滞后期,持续数十分钟,并且与浓度有关。临界核由六到八个部分折叠的二聚体组成。然后,线性生长以二聚体为基础,随后通过伸长和变厚在数小时内进行后续纤维生长。在稍后的时间(数小时),纤维主要通过伸长来生长。这种折叠和组装过程的动力学、生物分子描述允许对自组装纤维系统进行操纵和控制,我们通过种晶实验来证明这一点,以获得不同长度分布的纤维。这项研究和我们提出的结果机制为实现具有未来生物技术、纳米科学和技术应用的功能性纤维的时间控制提供了一种潜在途径。