Laboratory for Advanced Biopolymers, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Nat Commun. 2020 Jan 17;11(1):351. doi: 10.1038/s41467-019-14257-0.
Despite advances in directing the assembly of biomacromolecules into well-defined nanostructures, leveraging pathway complexity of molecular disorder to order transition while bridging materials fabrication from nano- to macroscale remains a challenge. Here, we present templated crystallization of structural proteins to nanofabricate hierarchically structured materials up to centimeter scale, using silk fibroin as an example. The process involves the use of ordered peptide supramolecular assemblies as templates to direct the folding and assembly of silk fibroin into nanofibrillar structures. Silk polymorphs can be engineered by varying the peptide seeds used. Modulation of the relative concentration between silk fibroin and peptide seeds, silk fibroin molecular weight and pH allows control over nanofibrils morphologies and mechanical properties. Finally, facile integration of the bottom-up templated crystallization with emerging top-down techniques enables the generation of macroscopic nanostructured materials with potential applications in information storage/encryption, surface functionalization, and printable three-dimensional constructs of customized architecture and controlled anisotropy.
尽管在指导生物大分子组装成具有明确定义的纳米结构方面取得了进展,但在从纳米到宏观尺度上实现材料制造的同时,利用分子无序的途径复杂性来实现有序转变仍然是一个挑战。在这里,我们提出了使用丝素蛋白作为示例,通过模板引导结晶来纳米制造具有层次结构的材料,其尺寸可达厘米级。该过程涉及使用有序的肽超分子组装体作为模板,来指导丝素蛋白的折叠和组装成纳米纤维结构。通过改变使用的肽种子,可以对丝素蛋白多晶型进行工程设计。通过调节丝素蛋白和肽种子之间的相对浓度、丝素蛋白分子量和 pH,可以控制纳米纤维的形态和机械性能。最后,通过将自下而上的模板引导结晶与新兴的自上而下技术相结合,可实现具有潜在应用的宏观纳米结构材料的生成,包括信息存储/加密、表面功能化以及可定制结构和受控各向异性的可打印三维结构。