Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94117, USA.
Brain. 2010 May;133(Pt 5):1352-67. doi: 10.1093/brain/awq075. Epub 2010 Apr 21.
Resting-state or intrinsic connectivity network functional magnetic resonance imaging provides a new tool for mapping large-scale neural network function and dysfunction. Recently, we showed that behavioural variant frontotemporal dementia and Alzheimer's disease cause atrophy within two major networks, an anterior 'Salience Network' (atrophied in behavioural variant frontotemporal dementia) and a posterior 'Default Mode Network' (atrophied in Alzheimer's disease). These networks exhibit an anti-correlated relationship with each other in the healthy brain. The two diseases also feature divergent symptom-deficit profiles, with behavioural variant frontotemporal dementia undermining social-emotional function and preserving or enhancing visuospatial skills, and Alzheimer's disease showing the inverse pattern. We hypothesized that these disorders would exert opposing connectivity effects within the Salience Network (disrupted in behavioural variant frontotemporal dementia but enhanced in Alzheimer's disease) and the Default Mode Network (disrupted in Alzheimer's disease but enhanced in behavioural variant frontotemporal dementia). With task-free functional magnetic resonance imaging, we tested these ideas in behavioural variant frontotemporal dementia, Alzheimer's disease and healthy age-matched controls (n = 12 per group), using independent component analyses to generate group-level network contrasts. As predicted, behavioural variant frontotemporal dementia attenuated Salience Network connectivity, most notably in frontoinsular, cingulate, striatal, thalamic and brainstem nodes, but enhanced connectivity within the Default Mode Network. Alzheimer's disease, in contrast, reduced Default Mode Network connectivity to posterior hippocampus, medial cingulo-parieto-occipital regions and the dorsal raphe nucleus, but intensified Salience Network connectivity. Specific regions of connectivity disruption within each targeted network predicted intrinsic connectivity enhancement within the reciprocal network. In behavioural variant frontotemporal dementia, clinical severity correlated with loss of right frontoinsular Salience Network connectivity and with biparietal Default Mode Network connectivity enhancement. Based on these results, we explored whether a combined index of Salience Network and Default Mode Network connectivity might discriminate between the three groups. Linear discriminant analysis achieved 92% clinical classification accuracy, including 100% separation of behavioural variant frontotemporal dementia and Alzheimer's disease. Patients whose clinical diagnoses were supported by molecular imaging, genetics, or pathology showed 100% separation using this method, including four diagnostically equivocal 'test' patients not used to train the algorithm. Overall, the findings suggest that behavioural variant frontotemporal dementia and Alzheimer's disease lead to divergent network connectivity patterns, consistent with known reciprocal network interactions and the strength and deficit profiles of the two disorders. Further developed, intrinsic connectivity network signatures may provide simple, inexpensive, and non-invasive biomarkers for dementia differential diagnosis and disease monitoring.
静息态或内源性连接网络功能磁共振成像为绘制大规模神经网络功能和功能障碍图谱提供了一种新工具。最近,我们发现行为变异型额颞叶痴呆和阿尔茨海默病导致两个主要网络的萎缩,一个是前部“突显网络”(在行为变异型额颞叶痴呆中萎缩),另一个是后部“默认模式网络”(在阿尔茨海默病中萎缩)。在健康的大脑中,这两个网络彼此之间呈反相关关系。这两种疾病还具有不同的症状缺陷特征,行为变异型额颞叶痴呆会破坏社交情感功能,同时保留或增强视觉空间技能,而阿尔茨海默病则呈现相反的模式。我们假设这些疾病会在突显网络(在行为变异型额颞叶痴呆中受到干扰,但在阿尔茨海默病中增强)和默认模式网络(在阿尔茨海默病中受到干扰,但在行为变异型额颞叶痴呆中增强)内产生相反的连接效应。使用无任务功能磁共振成像,我们在行为变异型额颞叶痴呆、阿尔茨海默病和年龄匹配的健康对照组中(每组 12 人)测试了这些想法,使用独立成分分析生成组水平的网络对比。正如预测的那样,行为变异型额颞叶痴呆症减弱了突显网络的连接,尤其是在前额回、扣带回、纹状体、丘脑和脑干节点,但增强了默认模式网络的连接。相比之下,阿尔茨海默病降低了后海马体、内侧扣带回-顶枕叶区域和中缝核的默认模式网络连接,但强化了突显网络的连接。每个靶向网络内特定的连接中断区域预测了互惠网络内的内在连接增强。在行为变异型额颞叶痴呆症中,临床严重程度与右侧额岛突显网络连接的丧失以及双侧顶枕部默认模式网络连接的增强相关。基于这些结果,我们探讨了突显网络和默认模式网络连接的综合指数是否可以区分这三组。线性判别分析实现了 92%的临床分类准确性,包括行为变异型额颞叶痴呆症和阿尔茨海默病的 100%分离。使用这种方法,对接受分子成像、遗传学或病理学支持的临床诊断的患者进行了 100%的分离,包括四个诊断上有疑问的“测试”患者,这些患者未用于训练算法。总的来说,这些发现表明行为变异型额颞叶痴呆症和阿尔茨海默病导致了不同的网络连接模式,这与已知的互惠网络相互作用以及两种疾病的强度和缺陷特征一致。进一步发展的内在连接网络特征可能为痴呆症的鉴别诊断和疾病监测提供简单、廉价和非侵入性的生物标志物。
Biol Psychiatry. 2014-2-4
Int J Clin Health Psychol. 2025
J Alzheimers Dis. 2025-5-22
Cereb Cortex. 2009-8-26
Hum Brain Mapp. 2010-2
J Neurosci. 2009-7-1
Philos Trans R Soc Lond B Biol Sci. 2009-5-27