Suppr超能文献

基于水平集自适应卷积的容积黏膜中结肠息肉的计算机辅助检测,推进 CT 结肠成像向筛查方式发展。

Computer-aided detection of colonic polyps with level set-based adaptive convolution in volumetric mucosa to advance CT colonography toward a screening modality.

机构信息

Department of Radiology.

出版信息

Cancer Manag Res. 2009;1:1-13. doi: 10.2147/cmar.s4546. Epub 2009 Mar 11.

Abstract

As a promising second reader of computed tomographic colonography (CTC) screening, the computer-aided detection (CAD) of colonic polyps has earned fast growing research interest. In this paper, we present a CAD scheme to automatically detect colonic polyps in CTC images. First, a thick colon wall representation, ie, a volumetric mucosa (VM) with several voxels wide in general, was segmented from CTC images by a partial-volume image segmentation algorithm. Based on the VM, we employed a level set-based adaptive convolution method for calculating the first- and second-order spatial derivatives more accurately to start the geometric analysis. Furthermore, to emphasize the correspondence among different layers in the VM, we introduced a middle-layer enhanced integration along the image gradient direction inside the VM to improve the operation of extracting the geometric information, like the principal curvatures. Initial polyp candidates (IPCs) were then determined by thresholding the geometric measurements. Based on IPCs, several features were extracted for each IPC, and fed into a support vector machine to reduce false positives (FPs). The final detections were displayed in a commercial system to provide second opinions for radiologists. The CAD scheme was applied to 26 patient CTC studies with 32 confirmed polyps by both optical and virtual colonoscopies. Compared to our previous work, all the polyps can be detected successfully with less FPs. At the 100% by polyp sensitivity, the new method yielded 3.5 FPs/dataset.

摘要

作为计算机断层结肠成像(CTC)筛查有潜力的第二读片者,计算机辅助检测(CAD)结肠息肉已经引起了快速增长的研究兴趣。在本文中,我们提出了一种 CAD 方案,用于自动检测 CTC 图像中的结肠息肉。首先,通过部分容积图像分割算法,从 CTC 图像中分割出厚的结肠壁表示,即通常具有几个体素宽的容积黏膜(VM)。基于 VM,我们采用基于水平集的自适应卷积方法,更准确地计算一阶和二阶空间导数,以启动几何分析。此外,为了强调 VM 中不同层之间的对应关系,我们在 VM 内沿图像梯度方向引入了中间层增强积分,以改善提取几何信息(如主曲率)的操作。然后通过对几何测量进行阈值处理来确定初始息肉候选物(IPCs)。基于 IPC,为每个 IPC 提取了几个特征,并将其输入支持向量机以减少假阳性(FP)。最终的检测结果显示在商业系统中,为放射科医生提供第二意见。CAD 方案应用于 26 例经光学和虚拟结肠镜检查证实的 32 例患者的 CTC 研究。与我们之前的工作相比,所有的息肉都可以成功检测到,且 FP 较少。在 100%的息肉敏感度下,该方法的 FP 为 3.5/dataset。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82f/3004668/a954c2eea7da/cmr-1-001f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验