Suppr超能文献

一种通过多级形态计量特征分类分割白质病变的自动化方法及其在狼疮中的应用。

An Automated Method for Segmenting White Matter Lesions through Multi-Level Morphometric Feature Classification with Application to Lupus.

作者信息

Scully Mark, Anderson Blake, Lane Terran, Gasparovic Charles, Magnotta Vince, Sibbitt Wilmer, Roldan Carlos, Kikinis Ron, Bockholt Henry J

机构信息

The Mind Research Network Albuquerque, NM, USA.

出版信息

Front Hum Neurosci. 2010 Apr 19;4:27. doi: 10.3389/fnhum.2010.00027. eCollection 2010.

Abstract

We demonstrate an automated, multi-level method to segment white matter brain lesions and apply it to lupus. The method makes use of local morphometric features based on multiple MR sequences, including T1-weighted, T2-weighted, and fluid attenuated inversion recovery. After preprocessing, including co-registration, brain extraction, bias correction, and intensity standardization, 49 features are calculated for each brain voxel based on local morphometry. At each level of segmentation a supervised classifier takes advantage of a different subset of the features to conservatively segment lesion voxels, passing on more difficult voxels to the next classifier. This multi-level approach allows for a fast lesion classification method with tunable trade-offs between sensitivity and specificity producing accuracy comparable to a human rater.

摘要

我们展示了一种用于分割脑白质病变的自动化多级方法,并将其应用于狼疮。该方法利用基于多个磁共振序列的局部形态特征,包括T1加权、T2加权和液体衰减反转恢复序列。经过预处理,包括配准、脑提取、偏差校正和强度标准化后,基于局部形态学为每个脑体素计算49个特征。在分割的每个级别,一个监督分类器利用不同的特征子集来保守地分割病变体素,将更难处理的体素传递给下一个分类器。这种多级方法允许一种快速的病变分类方法,在敏感性和特异性之间进行可调权衡,并产生与人类评级者相当的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca60/2859868/79113e848334/fnhum-04-00027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验