CEREMADE, UMR 7534 CNRS Université Paris Dauphine, France; CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, Qld, Australia.
Int J Numer Method Biomed Eng. 2013 Sep;29(9):905-15. doi: 10.1002/cnm.2537. Epub 2013 Jan 10.
Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54 ± 0.12, 0.72 ± 0.06 and 0.82 ± 0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52 ± 0.13, 0.71 ± 0.08 and 0.81 ± 0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing.
支持向量机(SVM)是一种机器学习技术,已被用于医学图像的分割和分类,包括脑白质高信号(WMH)的分割。目前,基于 SVM 的 WMH 分割方法从大脑中提取特征,对这些特征进行分类,然后进行复杂的后处理步骤以去除假阳性。本文提出的方法结合了先进的预处理、基于组织的特征选择和 SVM 分类,以获得高效、准确的 WMH 分割。我们对 125 名患者的数据进行了研究,这些患者的数据来自多达四种磁共振模态(T1-w、T2-w、质子密度和液体衰减反转恢复(FLAIR)),比较了不同邻域大小和多尺度特征的使用。结果发现,尽管使用所有四种模态可以获得最佳的总体分类效果(小、中、大病变负荷的平均 Dice 评分分别为 0.54±0.12、0.72±0.06 和 0.82±0.06),但这与仅使用 T1-w 和 FLAIR 序列(Dice 评分分别为 0.52±0.13、0.71±0.08 和 0.81±0.07)没有显著差异(p=0.50)。此外,使用 5×5×5 和 3×3×3 特征之间几乎没有差异(p=0.93)。最后,我们表明,仔细考虑特征和预处理技术不仅可以节省存储空间和计算时间,而且还可以提高分类效率,优于基于后处理的所有特征的分类。