Suppr超能文献

高氧对 4.7ATA 浸水俯卧位运动时通气和肺血流动力学的影响:对浸水性肺水肿的可能影响。

Effects of hyperoxia on ventilation and pulmonary hemodynamics during immersed prone exercise at 4.7 ATA: possible implications for immersion pulmonary edema.

机构信息

Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

J Appl Physiol (1985). 2010 Jul;109(1):68-78. doi: 10.1152/japplphysiol.01431.2009. Epub 2010 Apr 29.

Abstract

Immersion pulmonary edema (IPE) can occur in otherwise healthy swimmers and divers, likely because of stress failure of pulmonary capillaries secondary to increased pulmonary vascular pressures. Prior studies have revealed progressive increase in ventilation [minute ventilation (Ve)] during prolonged immersed exercise. We hypothesized that this increase occurs because of development of metabolic acidosis with concomitant rise in mean pulmonary artery pressure (MPAP) and that hyperoxia attenuates this increase. Ten subjects were studied at rest and during 16 min of exercise submersed at 1 atm absolute (ATA) breathing air and at 4.7 ATA in normoxia and hyperoxia [inspired P(O(2)) (Pi(O(2))) 1.75 ATA]. Ve increased from early (E, 6th minute) to late (L, 16th minute) exercise at 1 ATA (64.1 +/- 8.6 to 71.7 +/- 10.9 l/min BTPS; P < 0.001), with no change in arterial pH or Pco(2). MPAP decreased from E to L at 1 ATA (26.7 +/- 5.8 to 22.7 +/- 5.2 mmHg; P = 0.003). Ve and MPAP did not change from E to L at 4.7 ATA. Hyperoxia reduced Ve (62.6 +/- 10.5 to 53.1 +/- 6.1 l/min BTPS; P < 0.0001) and MPAP (29.7 +/- 7.4 to 25.1 +/- 5.7 mmHg, P = 0.002). Variability in MPAP among subjects was wide (range 14.1-42.1 mmHg during surface and depth exercise). Alveolar-arterial Po(2) difference increased from E to L in normoxia, consistent with increased lung water. We conclude that increased Ve at 1 ATA is not due to acidosis and is more consistent with respiratory muscle fatigue and that progressive pulmonary vascular hypertension does not occur during prolonged immersed exercise. Wide variation in MPAP among healthy subjects is consistent with variable individual susceptibility to IPE.

摘要

浸没性肺水肿(IPE)可发生于健康游泳或潜水者,可能是由于肺动脉压升高导致肺毛细血管压力应激性破裂。先前的研究显示,长时间浸没运动期间通气量[分钟通气量(Ve)]逐渐增加。我们假设这种增加是由于代谢性酸中毒的发展,伴随着平均肺动脉压(MPAP)的升高,而高氧血症会减弱这种增加。10 名受试者在 1 个大气压(ATA)下呼吸空气和 4.7ATA 下的常氧和高氧环境中进行 16 分钟运动时,在休息和运动早期(E,第 6 分钟)和晚期(L,第 16 分钟)进行研究[吸入氧分压(Pi(O2))1.75ATA]。在 1ATA 时,Ve 从早期(E,第 6 分钟)到晚期(L,第 16 分钟)运动增加(64.1+/-8.6 到 71.7+/-10.9l/minBTPS;P<0.001),动脉 pH 值或 Pco2 没有变化。在 1ATA 时,MPAP 从 E 到 L 降低(26.7+/-5.8 到 22.7+/-5.2mmHg;P=0.003)。在 4.7ATA 时,Ve 和 MPAP 从 E 到 L 没有变化。高氧血症降低了 Ve(62.6+/-10.5 到 53.1+/-6.1l/minBTPS;P<0.0001)和 MPAP(29.7+/-7.4 到 25.1+/-5.7mmHg,P=0.002)。受试者之间的 MPAP 变异性很大(表面和深度运动时范围为 14.1-42.1mmHg)。在常氧下,肺泡-动脉 Po2 差异从 E 到 L 增加,这与肺水增加一致。我们得出结论,1ATA 时 Ve 的增加不是由于酸中毒引起的,而是更符合呼吸肌疲劳,而且在长时间浸没运动期间不会发生进行性肺动脉高压。健康受试者之间 MPAP 的广泛差异与对 IPE 的个体易感性不同一致。

相似文献

3
Effects of head and body cooling on hemodynamics during immersed prone exercise at 1 ATA.
J Appl Physiol (1985). 2009 Feb;106(2):691-700. doi: 10.1152/japplphysiol.91237.2008. Epub 2008 Nov 20.
4
Predictors of increased PaCO2 during immersed prone exercise at 4.7 ATA.
J Appl Physiol (1985). 2009 Jan;106(1):316-25. doi: 10.1152/japplphysiol.00885.2007. Epub 2008 Sep 11.
5
A literature review of immersion pulmonary edema.
Phys Sportsmed. 2019 May;47(2):148-151. doi: 10.1080/00913847.2018.1546104. Epub 2018 Nov 17.
6
Hyperbaric hyperoxia reduces exercising forearm blood flow in humans.
Am J Physiol Heart Circ Physiol. 2011 May;300(5):H1892-7. doi: 10.1152/ajpheart.00165.2011. Epub 2011 Mar 18.
7
Relative effects of submersion and increased pressure on respiratory mechanics, work, and energy cost of breathing.
J Appl Physiol (1985). 2013 Mar 1;114(5):578-91. doi: 10.1152/japplphysiol.00584.2012. Epub 2013 Jan 10.
9
Swimming-Induced Pulmonary Edema: Pathophysiology and Risk Reduction With Sildenafil.
Circulation. 2016 Mar 8;133(10):988-96. doi: 10.1161/CIRCULATIONAHA.115.019464. Epub 2016 Feb 16.
10
Hypercapnia in diving: a review of CO₂ retention in submersed exercise at depth.
Undersea Hyperb Med. 2017 May-Jun;44(3):191-209. doi: 10.22462/5.6.2017.1.

引用本文的文献

1
Does Heart Rate Variability Predict Impairment of Operational Performance in Divers?
Sensors (Basel). 2024 Dec 3;24(23):7726. doi: 10.3390/s24237726.
2
Oxygen-enriched air reduces breathing gas consumption over air.
Curr Res Physiol. 2022 Jan 30;5:79-82. doi: 10.1016/j.crphys.2022.01.007. eCollection 2022.
3
An update on environment-induced pulmonary edema - "When the lungs leak under water and in thin air".
Front Physiol. 2022 Oct 7;13:1007316. doi: 10.3389/fphys.2022.1007316. eCollection 2022.
4
Diving ergospirometry with suspended weights: breathing- and fin-swimming style matter.
Eur J Appl Physiol. 2022 Nov;122(11):2463-2473. doi: 10.1007/s00421-022-05009-y. Epub 2022 Aug 25.
5
Oxygen-enriched Air Decreases Ventilation during High-intensity Fin-swimming Underwater.
Int J Sports Med. 2022 Mar;43(3):230-236. doi: 10.1055/a-1554-5093. Epub 2021 Aug 16.
6
Carotid body chemosensitivity is not attenuated during cold water diving.
Am J Physiol Regul Integr Comp Physiol. 2021 Aug 1;321(2):R197-R207. doi: 10.1152/ajpregu.00202.2020. Epub 2021 Jun 16.
7
Carotid body chemosensitivity at 1.6 ATA breathing air versus 100% oxygen.
J Appl Physiol (1985). 2020 Aug 1;129(2):247-256. doi: 10.1152/japplphysiol.00275.2020. Epub 2020 Jun 25.
10
Swimming-Induced Pulmonary Edema: Pathophysiology and Risk Reduction With Sildenafil.
Circulation. 2016 Mar 8;133(10):988-96. doi: 10.1161/CIRCULATIONAHA.115.019464. Epub 2016 Feb 16.

本文引用的文献

1
Respiratory muscle training reduces the work of breathing at depth.
Eur J Appl Physiol. 2010 Mar;108(4):811-20. doi: 10.1007/s00421-009-1275-3.
2
The abdominal circulatory pump.
PLoS One. 2009;4(5):e5550. doi: 10.1371/journal.pone.0005550. Epub 2009 May 14.
3
Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review.
Eur Respir J. 2009 Oct;34(4):888-94. doi: 10.1183/09031936.00145608. Epub 2009 Mar 26.
4
Effects of head and body cooling on hemodynamics during immersed prone exercise at 1 ATA.
J Appl Physiol (1985). 2009 Feb;106(2):691-700. doi: 10.1152/japplphysiol.91237.2008. Epub 2008 Nov 20.
5
Pulmonary gas exchange in diving.
J Appl Physiol (1985). 2009 Feb;106(2):668-77. doi: 10.1152/japplphysiol.91104.2008. Epub 2008 Nov 13.
6
Predictors of increased PaCO2 during immersed prone exercise at 4.7 ATA.
J Appl Physiol (1985). 2009 Jan;106(1):316-25. doi: 10.1152/japplphysiol.00885.2007. Epub 2008 Sep 11.
8
Respiratory muscle training improves swimming endurance at depth.
Undersea Hyperb Med. 2008 May-Jun;35(3):185-96.
9
Exercise-induced respiratory muscle fatigue: implications for performance.
J Appl Physiol (1985). 2008 Mar;104(3):879-88. doi: 10.1152/japplphysiol.01157.2007. Epub 2007 Dec 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验