Chinnakkannu Panneerselvam, Samanna Venkatesababa, Cheng Guangmao, Ablonczy Zsolt, Baicu Catalin F, Bethard Jennifer R, Menick Donald R, Kuppuswamy Dhandapani, Cooper George
Cardiology Division, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina 29403, USA.
J Biol Chem. 2010 Jul 9;285(28):21837-48. doi: 10.1074/jbc.M110.120709. Epub 2010 May 1.
In severe pressure overload-induced cardiac hypertrophy, a dense, stabilized microtubule network forms that interferes with cardiocyte contraction and microtubule-based transport. This is associated with persistent transcriptional up-regulation of cardiac alpha- and beta-tubulin and microtubule-stabilizing microtubule-associated protein 4 (MAP4). There is also extensive microtubule decoration by MAP4, suggesting greater MAP4 affinity for microtubules. Because the major determinant of this affinity is site-specific MAP4 dephosphorylation, we characterized this in hypertrophied myocardium and then assessed the functional significance of each dephosphorylation site found by mimicking it in normal cardiocytes. We first isolated MAP4 from normal and pressure overload-hypertrophied feline myocardium; volume-overloaded myocardium, which has an equal degree and duration of hypertrophy but normal functional and cytoskeletal properties, served as a control for any nonspecific growth-related effects. After cloning cDNA-encoding feline MAP4 and obtaining its deduced amino acid sequence, we characterized by mass spectrometry any site-specific MAP4 dephosphorylation. Solely in pressure overload-hypertrophied myocardium, we identified striking MAP4 dephosphorylation at Ser-472 in the MAP4 N-terminal projection domain and at Ser-924 and Ser-1056 in the assembly-promoting region of the C-terminal microtubule-binding domain. Site-directed mutagenesis of MAP4 cDNA was then used to switch each serine to non-phosphorylatable alanine. Wild-type and mutated cDNAs were used to construct adenoviruses; microtubule network density, stability, and MAP4 decoration were assessed in normal cardiocytes following an equivalent level of MAP4 expression. The Ser-924 --> Ala MAP4 mutant produced a microtubule phenotype indistinguishable from that seen in pressure overload hypertrophy, such that Ser-924 MAP4 dephosphorylation during pressure overload hypertrophy may be central to this cytoskeletal abnormality.
在严重压力超负荷诱导的心脏肥大中,会形成一个致密、稳定的微管网络,该网络会干扰心肌细胞收缩和基于微管的运输。这与心脏α-和β-微管蛋白以及微管稳定相关蛋白4(MAP4)的持续转录上调有关。MAP4对微管也有广泛的修饰,表明MAP4对微管具有更高的亲和力。由于这种亲和力的主要决定因素是位点特异性的MAP4去磷酸化,我们对肥厚心肌中的这种现象进行了表征,然后通过在正常心肌细胞中模拟每个去磷酸化位点来评估其功能意义。我们首先从正常和压力超负荷肥大的猫心肌中分离出MAP4;容量超负荷心肌具有相同程度和持续时间的肥大,但具有正常的功能和细胞骨架特性,用作任何非特异性生长相关效应的对照。在克隆编码猫MAP4的cDNA并获得其推导的氨基酸序列后,我们通过质谱对任何位点特异性的MAP4去磷酸化进行了表征。仅在压力超负荷肥大的心肌中,我们在MAP4 N端投影结构域的Ser-472以及C端微管结合结构域的组装促进区域的Ser-924和Ser-1056处发现了显著的MAP4去磷酸化。然后使用MAP4 cDNA的定点诱变将每个丝氨酸转换为不可磷酸化的丙氨酸。野生型和突变型cDNA用于构建腺病毒;在MAP4表达水平相当的情况下,对正常心肌细胞中的微管网络密度、稳定性和MAP4修饰进行了评估。Ser-924→Ala MAP4突变体产生的微管表型与压力超负荷肥大中观察到的表型无法区分,因此压力超负荷肥大期间Ser-924 MAP4去磷酸化可能是这种细胞骨架异常的核心。