Suppr超能文献

使用互信息和条件独立性学习生物网络。

Learning biological network using mutual information and conditional independence.

机构信息

Department of Computer Science and Engineering, The University of Texas at Arlington, 76019, USA.

出版信息

BMC Bioinformatics. 2010 Apr 29;11 Suppl 3(Suppl 3):S9. doi: 10.1186/1471-2105-11-S3-S9.

Abstract

BACKGROUND

Biological networks offer us a new way to investigate the interactions among different components and address the biological system as a whole. In this paper, a reverse-phase protein microarray (RPPM) is used for the quantitative measurement of proteomic responses.

RESULTS

To discover the signaling pathway responsive to RPPM, a new structure learning algorithm of Bayesian networks is developed based on mutual Information, conditional independence, and graph immorality. Trusted biology networks are thus predicted by the new approach. As an application example, we investigate signaling networks of ataxia telangiectasis mutation (ATM). The study was carried out at different time points under different dosages for cell lines with and without gene transfection. To validate the performance of the proposed algorithm, comparison experiments were also implemented using three well-known networks. From the experiment results, our approach produces more reliable networks with a relatively small number of wrong connection especially in mid-size networks. By using the proposed method, we predicted different networks for ATM under different doses of radiation treatment, and those networks were compared with results from eight different protein protein interaction (PPI) databases.

CONCLUSIONS

By using a new protein microarray technology in combination with a new computational framework, we demonstrate an application of the methodology to the study of biological networks of ATM cell lines under low dose ionization radiation.

摘要

背景

生物网络为我们提供了一种新的方法来研究不同组件之间的相互作用,并将整个生物系统作为一个整体进行研究。在本文中,我们使用反相蛋白微阵列(RPPM)进行蛋白质组反应的定量测量。

结果

为了发现对 RPPM 有反应的信号通路,我们开发了一种基于互信息、条件独立性和图不道德性的贝叶斯网络新结构学习算法。通过新方法预测了可信的生物学网络。作为应用实例,我们研究了共济失调毛细血管扩张症突变(ATM)的信号网络。该研究在不同剂量下针对具有和不具有基因转染的细胞系在不同时间点进行。为了验证所提出算法的性能,还使用了三种著名的网络进行了比较实验。从实验结果来看,我们的方法在中规模网络中尤其在连接错误较少的情况下产生了更可靠的网络。通过使用所提出的方法,我们预测了 ATM 在不同辐射剂量下的不同网络,并将这些网络与来自八个不同蛋白质-蛋白质相互作用(PPI)数据库的结果进行了比较。

结论

通过使用新的蛋白质微阵列技术结合新的计算框架,我们展示了一种将该方法应用于低剂量电离辐射下 ATM 细胞系生物网络研究的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea15/2863068/0f2879d745ea/1471-2105-11-S3-S9-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验