Suppr超能文献

核心抑制因子指导的组蛋白 H3 在启动子染色质上的预乙酰化,使酵母中细胞类型特异性基因的快速转录转换成为可能。

Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast.

机构信息

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Box G-L2, Providence, RI 02912, USA.

出版信息

Mol Cell Biol. 2010 Jul;30(13):3342-56. doi: 10.1128/MCB.01450-09. Epub 2010 May 3.

Abstract

Switching between alternate states of gene transcription is fundamental to a multitude of cellular regulatory pathways, including those that govern differentiation. In spite of the progress in our understanding of such transitions in gene activity, a major unanswered question is how cells regulate the timing of these switches. Here, we have examined the kinetics of a transcriptional switch that accompanies the differentiation of yeast cells of one mating type into a distinct new cell type. We found that cell-type-specific genes silenced by the alpha2 repressor in the starting state are derepressed to establish the new mating-type-specific gene expression program coincident with the loss of alpha2 from promoters. This rapid derepression does not require the preloading of RNA polymerase II or a preinitiation complex but instead depends upon the Gcn5 histone acetyltransferase. Surprisingly, Gcn5-dependent acetylation of nucleosomes in the promoters of mating-type-specific genes requires the corepressor Ssn6-Tup1 even in the repressed state. Gcn5 partially acetylates the amino-terminal tails of histone H3 in repressed promoters, thereby priming them for rapid derepression upon loss of alpha2. Thus, Ssn6-Tup1 not only efficiently represses these target promoters but also functions to initiate derepression by creating a chromatin state poised for rapid activation.

摘要

基因转录的交替状态的转换是许多细胞调控途径的基础,包括那些控制分化的途径。尽管我们在理解基因活性的这些转变方面取得了进展,但一个主要的未解决的问题是细胞如何调节这些开关的时间。在这里,我们研究了伴随酵母细胞从一种交配型分化为一种独特的新细胞类型的转录开关的动力学。我们发现,起始状态中被α2 阻遏物沉默的细胞类型特异性基因被解除阻遏,以建立新的交配型特异性基因表达程序,同时α2 从启动子上丢失。这种快速的去阻遏不需要 RNA 聚合酶 II 或起始复合物的预先加载,而是依赖于 Gcn5 组蛋白乙酰转移酶。令人惊讶的是,即使在被抑制的状态下,Gcn5 依赖性乙酰化交配型特异性基因启动子中的核小体也需要共阻遏物 Ssn6-Tup1。Gcn5 部分乙酰化被抑制的启动子中的组蛋白 H3 的氨基末端尾巴,从而为α2 丢失后快速去阻遏做好准备。因此,Ssn6-Tup1 不仅能有效地抑制这些靶启动子,而且还能通过创建一种准备快速激活的染色质状态来启动去阻遏作用。

相似文献

9
Transcriptional repression by Tup1-Ssn6.由Tup1-Ssn6介导的转录抑制
Biochem Cell Biol. 2006 Aug;84(4):437-43. doi: 10.1139/o06-073.

引用本文的文献

7
A role for histone acetylation in regulating transcription elongation.组蛋白乙酰化在调节转录延伸中的作用。
Transcription. 2018;9(4):225-232. doi: 10.1080/21541264.2017.1394423. Epub 2017 Dec 8.
9
The glucose signaling network in yeast.酵母中的葡萄糖信号网络。
Biochim Biophys Acta. 2013 Nov;1830(11):5204-10. doi: 10.1016/j.bbagen.2013.07.025. Epub 2013 Aug 2.

本文引用的文献

2
Promoter proximal pausing on genes in metazoans.后生动物基因上的启动子近端暂停
Chromosoma. 2009 Feb;118(1):1-10. doi: 10.1007/s00412-008-0182-4. Epub 2008 Oct 2.
3
A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation.一种用于上皮-神经元转分化的秀丽隐杆线虫模型。
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3790-5. doi: 10.1073/pnas.0712159105. Epub 2008 Feb 28.
4
10
Chromatin signatures of pluripotent cell lines.多能细胞系的染色质特征
Nat Cell Biol. 2006 May;8(5):532-8. doi: 10.1038/ncb1403. Epub 2006 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验