Suppr超能文献

核心抑制因子指导的组蛋白 H3 在启动子染色质上的预乙酰化,使酵母中细胞类型特异性基因的快速转录转换成为可能。

Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast.

机构信息

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Box G-L2, Providence, RI 02912, USA.

出版信息

Mol Cell Biol. 2010 Jul;30(13):3342-56. doi: 10.1128/MCB.01450-09. Epub 2010 May 3.

Abstract

Switching between alternate states of gene transcription is fundamental to a multitude of cellular regulatory pathways, including those that govern differentiation. In spite of the progress in our understanding of such transitions in gene activity, a major unanswered question is how cells regulate the timing of these switches. Here, we have examined the kinetics of a transcriptional switch that accompanies the differentiation of yeast cells of one mating type into a distinct new cell type. We found that cell-type-specific genes silenced by the alpha2 repressor in the starting state are derepressed to establish the new mating-type-specific gene expression program coincident with the loss of alpha2 from promoters. This rapid derepression does not require the preloading of RNA polymerase II or a preinitiation complex but instead depends upon the Gcn5 histone acetyltransferase. Surprisingly, Gcn5-dependent acetylation of nucleosomes in the promoters of mating-type-specific genes requires the corepressor Ssn6-Tup1 even in the repressed state. Gcn5 partially acetylates the amino-terminal tails of histone H3 in repressed promoters, thereby priming them for rapid derepression upon loss of alpha2. Thus, Ssn6-Tup1 not only efficiently represses these target promoters but also functions to initiate derepression by creating a chromatin state poised for rapid activation.

摘要

基因转录的交替状态的转换是许多细胞调控途径的基础,包括那些控制分化的途径。尽管我们在理解基因活性的这些转变方面取得了进展,但一个主要的未解决的问题是细胞如何调节这些开关的时间。在这里,我们研究了伴随酵母细胞从一种交配型分化为一种独特的新细胞类型的转录开关的动力学。我们发现,起始状态中被α2 阻遏物沉默的细胞类型特异性基因被解除阻遏,以建立新的交配型特异性基因表达程序,同时α2 从启动子上丢失。这种快速的去阻遏不需要 RNA 聚合酶 II 或起始复合物的预先加载,而是依赖于 Gcn5 组蛋白乙酰转移酶。令人惊讶的是,即使在被抑制的状态下,Gcn5 依赖性乙酰化交配型特异性基因启动子中的核小体也需要共阻遏物 Ssn6-Tup1。Gcn5 部分乙酰化被抑制的启动子中的组蛋白 H3 的氨基末端尾巴,从而为α2 丢失后快速去阻遏做好准备。因此,Ssn6-Tup1 不仅能有效地抑制这些靶启动子,而且还能通过创建一种准备快速激活的染色质状态来启动去阻遏作用。

相似文献

3
Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae.
J Biol Chem. 2004 Sep 17;279(38):39240-50. doi: 10.1074/jbc.M407159200. Epub 2004 Jul 14.
4
Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
Mol Cell Biol. 2000 Oct;20(19):7088-98. doi: 10.1128/MCB.20.19.7088-7098.2000.
5
Amino termini of histones H3 and H4 are required for a1-alpha2 repression in yeast.
Mol Cell Biol. 1997 Nov;17(11):6555-62. doi: 10.1128/MCB.17.11.6555.
6
Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
J Mol Biol. 2001 Jun 22;309(5):1007-15. doi: 10.1006/jmbi.2001.4742.
7
Post-TATA binding protein recruitment clearance of Gcn5-dependent histone acetylation within promoter nucleosomes.
Mol Cell Biol. 2003 Nov;23(21):7809-17. doi: 10.1128/MCB.23.21.7809-7817.2003.
9
Transcriptional repression by Tup1-Ssn6.
Biochem Cell Biol. 2006 Aug;84(4):437-43. doi: 10.1139/o06-073.

引用本文的文献

4
Microstructure arrays of DNA using topographic control.
Nat Commun. 2019 Jun 7;10(1):2512. doi: 10.1038/s41467-019-10540-2.
5
Primed histone demethylation regulates shoot regenerative competency.
Nat Commun. 2019 Apr 16;10(1):1786. doi: 10.1038/s41467-019-09386-5.
6
Synthesis and DNA binding profile of monomeric, dimeric, and trimeric derivatives of crystal violet.
Bioorg Chem. 2019 Mar;83:297-302. doi: 10.1016/j.bioorg.2018.10.040. Epub 2018 Oct 25.
7
A role for histone acetylation in regulating transcription elongation.
Transcription. 2018;9(4):225-232. doi: 10.1080/21541264.2017.1394423. Epub 2017 Dec 8.
8
Dimeric and trimeric derivatives of the azinomycin B chromophore show enhanced DNA binding.
Org Biomol Chem. 2017 May 31;15(21):4522-4526. doi: 10.1039/c7ob00944e.
9
The glucose signaling network in yeast.
Biochim Biophys Acta. 2013 Nov;1830(11):5204-10. doi: 10.1016/j.bbagen.2013.07.025. Epub 2013 Aug 2.

本文引用的文献

1
A ubiquitin-selective AAA-ATPase mediates transcriptional switching by remodelling a repressor-promoter DNA complex.
Nat Cell Biol. 2009 Dec;11(12):1481-6. doi: 10.1038/ncb1997. Epub 2009 Nov 15.
2
Promoter proximal pausing on genes in metazoans.
Chromosoma. 2009 Feb;118(1):1-10. doi: 10.1007/s00412-008-0182-4. Epub 2008 Oct 2.
3
A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3790-5. doi: 10.1073/pnas.0712159105. Epub 2008 Feb 28.
4
RNA polymerase is poised for activation across the genome.
Nat Genet. 2007 Dec;39(12):1507-11. doi: 10.1038/ng.2007.21. Epub 2007 Nov 11.
5
RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo.
Nat Genet. 2007 Dec;39(12):1512-6. doi: 10.1038/ng.2007.26. Epub 2007 Nov 11.
6
The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation.
Mol Cell Biol. 2007 Jun;27(11):4198-205. doi: 10.1128/MCB.00238-07. Epub 2007 Mar 26.
8
A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
Cell. 2006 Apr 21;125(2):315-26. doi: 10.1016/j.cell.2006.02.041.
9
Systematic analysis of the transcriptional switch inducing migration of border cells.
Dev Cell. 2006 Apr;10(4):497-508. doi: 10.1016/j.devcel.2006.02.004.
10
Chromatin signatures of pluripotent cell lines.
Nat Cell Biol. 2006 May;8(5):532-8. doi: 10.1038/ncb1403. Epub 2006 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验