Suppr超能文献

抗原转运复合物 TAP 中的单个残基通过稳定接受构象来控制表位库。

Single residue within the antigen translocation complex TAP controls the epitope repertoire by stabilizing a receptive conformation.

机构信息

Institute of Biochemistry, Center for Membrane Proteomics, and Cluster of Excellence Frankfurt-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany.

出版信息

Proc Natl Acad Sci U S A. 2010 May 18;107(20):9135-40. doi: 10.1073/pnas.1001308107. Epub 2010 May 3.

Abstract

The recognition of virus infected or malignantly transformed cells by cytotoxic T lymphocytes critically depends on the transporter associated with antigen processing (TAP), which delivers proteasomal degradation products into the endoplasmic reticulum lumen for subsequent loading of major histocompatibility complex class I molecules. Here we have identified a single cysteinyl residue in the TAP complex that modulates peptide binding and translocation, thereby restricting the epitope repertoire. Cysteine 213 in human TAP2 was found to be part of a newly uncovered substrate-binding site crucial for peptide recognition. This residue contacts the peptide in the binding pocket in an orientated manner. The translocation complex can be reversibly inactivated by thiol modification of this cysteinyl residue. As part of an unexpected mechanism, this residue is crucial in complementing the binding pocket for a given subset of epitopes as well as in maintaining a substrate-receptive conformation of the translocation complex.

摘要

细胞毒性 T 淋巴细胞识别病毒感染或恶性转化细胞,关键依赖于抗原加工相关转运体(TAP),该转运体将蛋白酶体降解产物输送到内质网腔中,以便随后装载主要组织相容性复合体 I 类分子。在此,我们鉴定出 TAP 复合物中的一个半胱氨酸残基可调节肽结合和转运,从而限制了表位谱。发现人 TAP2 中的半胱氨酸 213 是新发现的底物结合位点的一部分,对肽识别至关重要。该残基以定向方式与结合口袋中的肽相互作用。该转运复合物可通过该半胱氨酸残基的巯基修饰而可逆失活。作为一种意想不到的机制的一部分,该残基在补充给定表位亚群的结合口袋以及维持转运复合物的底物接受构象方面至关重要。

相似文献

1
Single residue within the antigen translocation complex TAP controls the epitope repertoire by stabilizing a receptive conformation.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9135-40. doi: 10.1073/pnas.1001308107. Epub 2010 May 3.
2
Nucleotide binding by TAP mediates association with peptide and release of assembled MHC class I molecules.
Curr Biol. 1999 Sep 23;9(18):999-1008. doi: 10.1016/s0960-9822(99)80448-5.
5
Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries.
Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):8976-81. doi: 10.1073/pnas.94.17.8976.
6
The transporter associated with antigen processing: a key player in adaptive immunity.
Biol Chem. 2015 Sep;396(9-10):1059-72. doi: 10.1515/hsz-2014-0320.
8
Exploring the minimal functional unit of the transporter associated with antigen processing.
FEBS Lett. 2005 Aug 15;579(20):4413-6. doi: 10.1016/j.febslet.2005.07.006.
10
Defective presentation of MHC class I-restricted cytotoxic T-cell epitopes in Burkitt's lymphoma cells.
Int J Cancer. 1996 Oct 9;68(2):251-8. doi: 10.1002/(SICI)1097-0215(19961009)68:2<251::AID-IJC19>3.0.CO;2-D.

引用本文的文献

1
Principles of peptide selection by the transporter associated with antigen processing.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2320879121. doi: 10.1073/pnas.2320879121. Epub 2024 May 28.
2
3
Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters.
Nat Struct Mol Biol. 2019 Sep;26(9):792-801. doi: 10.1038/s41594-019-0280-4. Epub 2019 Aug 26.
4
Structure and Dynamics of Antigenic Peptides in Complex with TAP.
Front Immunol. 2017 Jan 30;8:10. doi: 10.3389/fimmu.2017.00010. eCollection 2017.
5
Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E438-E447. doi: 10.1073/pnas.1620009114. Epub 2017 Jan 9.
7
Exploiting the exploiter: a viral inhibitor stabilizes TAP for cryo-EM.
Nat Struct Mol Biol. 2016 Feb;23(2):95-7. doi: 10.1038/nsmb.3168.
9
Use of Functional Polymorphisms To Elucidate the Peptide Binding Site of TAP Complexes.
J Immunol. 2015 Oct 1;195(7):3436-48. doi: 10.4049/jimmunol.1500985. Epub 2015 Aug 31.

本文引用的文献

2
Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies.
Curr Opin Cell Biol. 2009 Aug;21(4):508-15. doi: 10.1016/j.ceb.2009.04.008. Epub 2009 May 13.
3
Structural arrangement of the transmission interface in the antigen ABC transport complex TAP.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5551-6. doi: 10.1073/pnas.0811260106. Epub 2009 Mar 18.
5
The quality control of MHC class I peptide loading.
Curr Opin Cell Biol. 2008 Dec;20(6):624-31. doi: 10.1016/j.ceb.2008.09.005. Epub 2008 Oct 29.
6
The Cys154-->Gly mutation in LacY causes constitutive opening of the hydrophilic periplasmic pathway.
J Mol Biol. 2008 Jun 13;379(4):695-703. doi: 10.1016/j.jmb.2008.04.015. Epub 2008 Apr 11.
7
Mutations at arginine 352 alter the pore architecture of CFTR.
J Membr Biol. 2008 Mar;222(2):91-106. doi: 10.1007/s00232-008-9105-9. Epub 2008 Apr 18.
8
A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5.
Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5069-74. doi: 10.1073/pnas.0800191105. Epub 2008 Mar 20.
9
Flexibility in the ABC transporter MsbA: Alternating access with a twist.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19005-10. doi: 10.1073/pnas.0709388104. Epub 2007 Nov 16.
10
Sugar binding induces an outward facing conformation of LacY.
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16504-9. doi: 10.1073/pnas.0708258104. Epub 2007 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验