Suppr超能文献

集体迁移上皮中的速度场。

Velocity fields in a collectively migrating epithelium.

机构信息

Laboratoire Physico-chimie Curie, Institut Curie, Centre de Recherche, CNRS, Université Pierre et Marie Curie, Paris, France.

出版信息

Biophys J. 2010 May 19;98(9):1790-800. doi: 10.1016/j.bpj.2010.01.030.

Abstract

We report quantitative measurements of the velocity field of collectively migrating cells in a motile epithelium. The migration is triggered by presenting free surface to an initially confluent monolayer by using a microstencil technique that does not damage the cells. To avoid the technical difficulties inherent in the tracking of single cells, the field is mapped using the technique of particle image velocimetry. The main relevant parameters, such as the velocity module, the order parameter, and the velocity correlation function, are then extracted from this cartography. These quantities are dynamically measured on two types of cells (collectively migrating Madin-Darby canine kidney (MDCK) cells and fibroblastlike normal rat kidney (NRK) cells), first as they approach confluence, and then when the geometrical constraints are released. In particular, for MDCK cells filling up the patterns, we observe a sharp decrease in the average velocity after the point of confluence, whereas the densification of the monolayer is much more regular. After the peeling off of the stencil, a velocity correlation length of approximately 200 microm is measured for MDCK cells versus only approximately 40 microm for the more independent NRK cells. Our conclusions are supported by parallel single-cell tracking experiments. By using the biorthogonal decomposition of the velocity field, we conclude that the velocity field of MDCK cells is very coherent in contrast with the NRK cells. The displacements in the fingers arising from the border of MDCK epithelia are very oriented along their main direction. They influence the velocity field in the epithelium over a distance of approximately 200 microm.

摘要

我们报告了在一个运动上皮中集体迁移细胞的速度场的定量测量。迁移是通过使用微掩模技术将自由表面呈现给最初汇合的单层来触发的,该技术不会损坏细胞。为了避免跟踪单个细胞所固有的技术困难,使用粒子图像测速技术来绘制该场。然后,从该映射中提取主要相关参数,例如速度模块、序参量和速度相关函数。这些数量在两种类型的细胞(集体迁移的 Madin-Darby 犬肾 (MDCK) 细胞和类成纤维细胞的正常大鼠肾 (NRK) 细胞)上进行动态测量,首先是在它们接近汇合时,然后是在释放几何约束时。特别是,对于填充图案的 MDCK 细胞,我们观察到在汇合点之后平均速度急剧下降,而单层的密集化则更加规则。掩模剥落后,对于 MDCK 细胞测量到大约 200 µm 的速度相关长度,而对于更加独立的 NRK 细胞仅测量到大约 40 µm。我们的结论得到了平行的单细胞跟踪实验的支持。通过使用速度场的双正交分解,我们得出结论,与 NRK 细胞相比,MDCK 细胞的速度场非常一致。源自 MDCK 上皮边缘的手指的位移非常沿着它们的主要方向定向。它们在大约 200 µm 的距离内影响上皮中的速度场。

相似文献

1
Velocity fields in a collectively migrating epithelium.
Biophys J. 2010 May 19;98(9):1790-800. doi: 10.1016/j.bpj.2010.01.030.
2
Collective migration of an epithelial monolayer in response to a model wound.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):15988-93. doi: 10.1073/pnas.0705062104. Epub 2007 Sep 28.
3
Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model.
PLoS Comput Biol. 2013;9(3):e1002944. doi: 10.1371/journal.pcbi.1002944. Epub 2013 Mar 7.
5
Advancing Edge Speeds of Epithelial Monolayers Depend on Their Initial Confining Geometry.
PLoS One. 2016 Apr 14;11(4):e0153471. doi: 10.1371/journal.pone.0153471. eCollection 2016.
6
Force mapping in epithelial cell migration.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2390-5. doi: 10.1073/pnas.0408482102. Epub 2005 Feb 4.
8
Polarization of Na(+)/H(+) and Cl(-)/HCO (3)(-) exchangers in migrating renal epithelial cells.
J Gen Physiol. 2000 May;115(5):599-608. doi: 10.1085/jgp.115.5.599.
10
Regulated synthesis and functions of laminin 5 in polarized madin-darby canine kidney epithelial cells.
Mol Biol Cell. 2006 Aug;17(8):3664-77. doi: 10.1091/mbc.e05-11-1070. Epub 2006 Jun 14.

引用本文的文献

1
The PAX3-FOXO1 fusion gene reduces cell-ECM interactions and TGFβ signaling in rhabdomyosarcoma.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202408155. Epub 2025 Jun 30.
2
Entropy Production in Epithelial Monolayers Due to Collective Cell Migration.
Entropy (Basel). 2025 Apr 29;27(5):483. doi: 10.3390/e27050483.
3
Substrate stress relaxation regulates monolayer fluidity and leader cell formation for collectively migrating epithelia.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2417290122. doi: 10.1073/pnas.2417290122. Epub 2025 Apr 9.
4
The maximum size of cell-aggregates is determined by the competition between the strain energy and the binding energy of cells.
Heliyon. 2024 Nov 20;10(23):e40560. doi: 10.1016/j.heliyon.2024.e40560. eCollection 2024 Dec 15.
5
Vinculin-Arp2/3 interaction inhibits branched actin assembly to control migration and proliferation.
Life Sci Alliance. 2024 Nov 15;8(2). doi: 10.26508/lsa.202402583. Print 2025 Feb.
6
Energetic scaling behavior of patterned epithelium.
J Biomech. 2024 Nov;176:112342. doi: 10.1016/j.jbiomech.2024.112342. Epub 2024 Sep 26.
7
Different Biomechanical Cell Behaviors in an Epithelium Drive Collective Epithelial Cell Extrusion.
Adv Sci (Weinh). 2024 Nov;11(42):e2401573. doi: 10.1002/advs.202401573. Epub 2024 Sep 18.
8
Physical aspects of epithelial cell-cell interactions: hidden system complexities.
Eur Biophys J. 2024 Nov;53(7-8):355-372. doi: 10.1007/s00249-024-01721-z. Epub 2024 Sep 10.
9
Epithelial cell-cell interactions in an overcrowded environment: jamming or live cell extrusion.
J Biol Eng. 2024 Sep 5;18(1):47. doi: 10.1186/s13036-024-00442-3.
10

本文引用的文献

1
Physical model of the dynamic instability in an expanding cell culture.
Biophys J. 2010 Feb 3;98(3):361-70. doi: 10.1016/j.bpj.2009.10.022.
2
Stochastic collective movement of cells and fingering morphology: no maverick cells.
Biophys J. 2009 Oct 7;97(7):1811-21. doi: 10.1016/j.bpj.2009.05.064.
3
Modular control of endothelial sheet migration.
Genes Dev. 2008 Dec 1;22(23):3268-81. doi: 10.1101/gad.1725808.
4
Collective guidance of collective cell migration.
Trends Cell Biol. 2007 Dec;17(12):575-9. doi: 10.1016/j.tcb.2007.09.007. Epub 2007 Nov 8.
5
Collective migration of an epithelial monolayer in response to a model wound.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):15988-93. doi: 10.1073/pnas.0705062104. Epub 2007 Sep 28.
6
Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture.
Am J Physiol Cell Physiol. 2007 Oct;293(4):C1327-37. doi: 10.1152/ajpcell.00001.2007. Epub 2007 Aug 8.
7
Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion.
Nat Cell Biol. 2007 Aug;9(8):893-904. doi: 10.1038/ncb1616. Epub 2007 Jul 8.
8
Basal-to-apical cadherin flow at cell junctions.
Nat Cell Biol. 2007 Jan;9(1):92-8. doi: 10.1038/ncb1520. Epub 2006 Dec 10.
9
Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation.
Blood. 2007 Feb 15;109(4):1345-52. doi: 10.1182/blood-2006-07-037952. Epub 2006 Oct 26.
10
Cell orientation by a microgrooved substrate can be predicted by automatic control theory.
Biophys J. 2006 Jun 15;90(12):4701-11. doi: 10.1529/biophysj.105.067967. Epub 2006 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验