Suppr超能文献

糖酵解和三羧酸循环反应热力学参数数据库。

A database of thermodynamic quantities for the reactions of glycolysis and the tricarboxylic acid cycle.

机构信息

Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.

出版信息

J Phys Chem B. 2010 Dec 16;114(49):16068-82. doi: 10.1021/jp911381p. Epub 2010 May 6.

Abstract

Analysis of biochemical systems requires reliable and self-consistent databases of thermodynamic properties for biochemical reactions. Here a database of thermodynamic properties for the reactions of glycolysis and the tricarboxylic acid cycle is developed from measured equilibrium data. Species-level free energies of formation are estimated on the basis of comparing thermodynamic model predictions for reaction-level equilibrium constants to previously reported data obtained under different experimental conditions. Matching model predictions to the data involves applying state corrections for ionic strength, pH, and metal ion binding for each input experimental biochemical measurement. By archiving all of the raw data, documenting all model assumptions and calculations, and making the computer package and data available, this work provides a framework for extension and refinement by adding to the underlying raw experimental data in the database and/or refining the underlying model assumptions. Thus the resulting database is a refinement of preexisting databases of thermodynamics in terms of reliability, self-consistency, transparency, and extensibility.

摘要

分析生化系统需要可靠且自洽的生化反应热力学性质数据库。本研究从测量得到的平衡数据中开发了糖酵解和三羧酸循环反应的热力学性质数据库。基于比较反应水平平衡常数的热力学模型预测与先前在不同实验条件下获得的数据,对物种水平的生成自由能进行了估计。为了使模型预测与数据匹配,需要针对每个输入实验生化测量值应用离子强度、pH 和金属离子结合的状态修正。通过归档所有原始数据、记录所有模型假设和计算,并提供计算机程序包和数据,这项工作为扩展和完善提供了框架,可以通过向数据库中添加基础原始实验数据和/或改进基础模型假设来实现。因此,与现有热力学数据库相比,该数据库在可靠性、自洽性、透明度和可扩展性方面得到了改进。

相似文献

1
A database of thermodynamic quantities for the reactions of glycolysis and the tricarboxylic acid cycle.
J Phys Chem B. 2010 Dec 16;114(49):16068-82. doi: 10.1021/jp911381p. Epub 2010 May 6.
4
Thermodynamics of reactions catalyzed by PABA synthase.
Biophys Chem. 2002 Apr 10;96(1):33-51. doi: 10.1016/s0301-4622(02)00034-0.
6
Thermodynamics of systems of biochemical reactions.
J Theor Biol. 2002 Apr 21;215(4):491-501. doi: 10.1006/jtbi.2001.2516.
7
Thermodynamics of reactions catalyzed by anthranilate synthase.
Biophys Chem. 2000 Feb 14;84(1):45-64. doi: 10.1016/s0301-4622(99)00145-3.
9
Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.
J Phys Chem B. 2010 Dec 30;114(51):17003-12. doi: 10.1021/jp107337g. Epub 2010 Nov 19.
10
Simulating metabolism with statistical thermodynamics.
PLoS One. 2014 Aug 4;9(8):e103582. doi: 10.1371/journal.pone.0103582. eCollection 2014.

引用本文的文献

1
Kinetics of the ancestral carbon metabolism pathways in deep-branching bacteria and archaea.
Commun Chem. 2021 Oct 22;4(1):149. doi: 10.1038/s42004-021-00585-0.
2
Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats.
PLoS Comput Biol. 2018 Feb 23;14(2):e1005982. doi: 10.1371/journal.pcbi.1005982. eCollection 2018 Feb.
3
Feedback Regulation and Time Hierarchy of Oxidative Phosphorylation in Cardiac Mitochondria.
Biophys J. 2016 Feb 23;110(4):972-80. doi: 10.1016/j.bpj.2016.01.003.
5
Determination of the catalytic mechanism for mitochondrial malate dehydrogenase.
Biophys J. 2015 Jan 20;108(2):408-19. doi: 10.1016/j.bpj.2014.11.3467.
6
Identification of the kinetic mechanism of succinyl-CoA synthetase.
Biosci Rep. 2013 Jan 18;33(1):145-63. doi: 10.1042/BSR20120069.
7
System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes.
PLoS Comput Biol. 2012;8(3):e1002415. doi: 10.1371/journal.pcbi.1002415. Epub 2012 Mar 1.
8
Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase.
BMC Biochem. 2011 Sep 26;12:53. doi: 10.1186/1471-2091-12-53.
9
Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase.
J Biol Chem. 2011 Jun 17;286(24):21100-9. doi: 10.1074/jbc.M110.214452. Epub 2011 Apr 15.

本文引用的文献

2
Experimentally observed phenomena on cardiac energetics in heart failure emerge from simulations of cardiac metabolism.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7143-8. doi: 10.1073/pnas.0812768106. Epub 2009 Apr 8.
3
BISEN: Biochemical Simulation Environment.
Bioinformatics. 2009 Mar 15;25(6):836-7. doi: 10.1093/bioinformatics/btp069. Epub 2009 Feb 25.
5
Detailed kinetics and regulation of mammalian NAD-linked isocitrate dehydrogenase.
Biochim Biophys Acta. 2008 Nov;1784(11):1641-51. doi: 10.1016/j.bbapap.2008.07.001. Epub 2008 Jul 11.
6
Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology.
J Biol Chem. 2007 Aug 24;282(34):24525-37. doi: 10.1074/jbc.M701024200. Epub 2007 Jun 25.
7
Thermodynamic properties of enzyme-catalyzed reactions involving cytosine, uracil, thymine, and their nucleosides and nucleotides.
Biophys Chem. 2007 Apr;127(1-2):91-6. doi: 10.1016/j.bpc.2006.12.010. Epub 2007 Jan 22.
8
Thermodynamics and kinetics of the glyoxylate cycle.
Biochemistry. 2006 Dec 26;45(51):15838-43. doi: 10.1021/bi061829e. Epub 2006 Dec 5.
9
Thermodynamics-based metabolic flux analysis.
Biophys J. 2007 Mar 1;92(5):1792-805. doi: 10.1529/biophysj.106.093138. Epub 2006 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验