Suppr超能文献

基于热力学的代谢通量分析。

Thermodynamics-based metabolic flux analysis.

作者信息

Henry Christopher S, Broadbelt Linda J, Hatzimanikatis Vassily

机构信息

Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois, USA.

出版信息

Biophys J. 2007 Mar 1;92(5):1792-805. doi: 10.1529/biophysj.106.093138. Epub 2006 Dec 15.

Abstract

A new form of metabolic flux analysis (MFA) called thermodynamics-based metabolic flux analysis (TMFA) is introduced with the capability of generating thermodynamically feasible flux and metabolite activity profiles on a genome scale. TMFA involves the use of a set of linear thermodynamic constraints in addition to the mass balance constraints typically used in MFA. TMFA produces flux distributions that do not contain any thermodynamically infeasible reactions or pathways, and it provides information about the free energy change of reactions and the range of metabolite activities in addition to reaction fluxes. TMFA is applied to study the thermodynamically feasible ranges for the fluxes and the Gibbs free energy change, Delta(r)G', of the reactions and the activities of the metabolites in the genome-scale metabolic model of Escherichia coli developed by Palsson and co-workers. In the TMFA of the genome scale model, the metabolite activities and reaction Delta(r)G' are able to achieve a wide range of values at optimal growth. The reaction dihydroorotase is identified as a possible thermodynamic bottleneck in E. coli metabolism with a Delta(r)G' constrained close to zero while numerous reactions are identified throughout metabolism for which Delta(r)G' is always highly negative regardless of metabolite concentrations. As it has been proposed previously, these reactions with exclusively negative Delta(r)G' might be candidates for cell regulation, and we find that a significant number of these reactions appear to be the first steps in the linear portion of numerous biosynthesis pathways. The thermodynamically feasible ranges for the concentration ratios ATP/ADP, NAD(P)/NAD(P)H, and H(extracellular)(+)/H(intracellular)(+) are also determined and found to encompass the values observed experimentally in every case. Further, we find that the NAD/NADH and NADP/NADPH ratios maintained in the cell are close to the minimum feasible ratio and maximum feasible ratio, respectively.

摘要

一种新的代谢通量分析(MFA)形式,即基于热力学的代谢通量分析(TMFA)被引入,它能够在基因组规模上生成热力学可行的通量和代谢物活性谱。TMFA除了使用MFA中通常使用的质量平衡约束外,还涉及一组线性热力学约束的使用。TMFA产生的通量分布不包含任何热力学不可行的反应或途径,并且除了反应通量外,还提供有关反应自由能变化和代谢物活性范围的信息。TMFA被应用于研究由帕尔森及其同事开发的大肠杆菌基因组规模代谢模型中通量的热力学可行范围、反应的吉布斯自由能变化Δ(r)G'以及代谢物的活性。在基因组规模模型的TMFA中,代谢物活性和反应Δ(r)G'在最佳生长时能够达到广泛的值。反应二氢乳清酸酶被确定为大肠杆菌代谢中可能的热力学瓶颈,其Δ(r)G'被限制在接近零的水平,而在整个代谢过程中发现许多反应的Δ(r)G'无论代谢物浓度如何总是高度为负。正如之前所提出的,这些具有唯一负Δ(r)G'的反应可能是细胞调控的候选者,并且我们发现这些反应中有相当数量似乎是众多生物合成途径线性部分的第一步。还确定了ATP/ADP、NAD(P)/NAD(P)H和H(细胞外)(+)/H(细胞内)(+)浓度比的热力学可行范围,并且发现在每种情况下都包含实验观察到的值。此外,我们发现细胞中维持的NAD/NADH和NADP/NADPH比值分别接近最小可行比值和最大可行比值。

相似文献

1
Thermodynamics-based metabolic flux analysis.
Biophys J. 2007 Mar 1;92(5):1792-805. doi: 10.1529/biophysj.106.093138. Epub 2006 Dec 15.
2
Genome-scale thermodynamic analysis of Escherichia coli metabolism.
Biophys J. 2006 Feb 15;90(4):1453-61. doi: 10.1529/biophysj.105.071720. Epub 2005 Nov 18.
5
Systematic assignment of thermodynamic constraints in metabolic network models.
BMC Bioinformatics. 2006 Nov 23;7:512. doi: 10.1186/1471-2105-7-512.
6
Which sets of elementary flux modes form thermodynamically feasible flux distributions?
FEBS J. 2016 May;283(9):1782-94. doi: 10.1111/febs.13702. Epub 2016 Mar 31.
7
9
Development of thermodynamic optimum searching (TOS) to improve the prediction accuracy of flux balance analysis.
Biotechnol Bioeng. 2013 Mar;110(3):914-23. doi: 10.1002/bit.24739. Epub 2012 Oct 18.
10
Pathway thermodynamics highlights kinetic obstacles in central metabolism.
PLoS Comput Biol. 2014 Feb 20;10(2):e1003483. doi: 10.1371/journal.pcbi.1003483. eCollection 2014 Feb.

引用本文的文献

1
An approach to learn regulation to maximize growth and entropy production rates in metabolism.
Front Syst Biol. 2023 Apr 5;3:981866. doi: 10.3389/fsysb.2023.981866. eCollection 2023.
3
The Dawn of High-Throughput and Genome-Scale Kinetic Modeling: Recent Advances and Future Directions.
ACS Synth Biol. 2025 Aug 15;14(8):2906-2919. doi: 10.1021/acssynbio.4c00868. Epub 2025 Apr 22.
4
Flux-sum coupling analysis of metabolic network models.
PLoS Comput Biol. 2025 Apr 7;21(4):e1012972. doi: 10.1371/journal.pcbi.1012972. eCollection 2025 Apr.
5
Implementation of a genome-scale model for upgrading syngas fermentations.
Comput Struct Biotechnol J. 2025 Jan 22;27:649-660. doi: 10.1016/j.csbj.2025.01.013. eCollection 2025.
6
Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states.
Nat Catal. 2024;7(10):1086-1098. doi: 10.1038/s41929-024-01220-6. Epub 2024 Aug 30.
7
Free-energy transduction mechanisms shape the flux space of metabolic networks.
Biophys J. 2024 Oct 15;123(20):3600-3611. doi: 10.1016/j.bpj.2024.09.012. Epub 2024 Sep 14.
8
Quantitative principles of microbial metabolism shared across scales.
Nat Microbiol. 2024 Aug;9(8):1940-1953. doi: 10.1038/s41564-024-01764-0. Epub 2024 Aug 6.
10
ATP biosensor reveals microbial energetic dynamics and facilitates bioproduction.
Nat Commun. 2024 Jun 21;15(1):5299. doi: 10.1038/s41467-024-49579-1.

本文引用的文献

1
Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors.
J Theor Biol. 1993 Dec 21;165(4):477-502. doi: 10.1006/jtbi.1993.1202.
4
Equations and calculations for fermentations of butyric acid bacteria.
Biotechnol Bioeng. 1984 Feb;26(2):174-87. doi: 10.1002/bit.260260210.
6
Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data.
Mol Syst Biol. 2006;2:2006.0034. doi: 10.1038/msb4100074. Epub 2006 Jun 20.
7
Genome-scale thermodynamic analysis of Escherichia coli metabolism.
Biophys J. 2006 Feb 15;90(4):1453-61. doi: 10.1529/biophysj.105.071720. Epub 2005 Nov 18.
8
How reliable are thermodynamic feasibility statements of biochemical pathways?
Biotechnol Bioeng. 2005 Oct 20;92(2):223-30. doi: 10.1002/bit.20572.
9
k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
Biophys J. 2005 Mar;88(3):1616-25. doi: 10.1529/biophysj.104.050385. Epub 2004 Dec 30.
10
Thermodynamic-based computational profiling of cellular regulatory control in hepatocyte metabolism.
Am J Physiol Endocrinol Metab. 2005 Mar;288(3):E633-44. doi: 10.1152/ajpendo.00239.2004. Epub 2004 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验