Suppr超能文献

iLoc-Euk:一种用于预测单plex 和 multiplex 真核蛋白质亚细胞定位的多标签分类器。

iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins.

机构信息

Gordon Life Science Institute, San Diego, California, United States of America.

出版信息

PLoS One. 2011 Mar 30;6(3):e18258. doi: 10.1371/journal.pone.0018258.

Abstract

Predicting protein subcellular localization is an important and difficult problem, particularly when query proteins may have the multiplex character, i.e., simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular location predictor can only be used to deal with the single-location or "singleplex" proteins. Actually, multiple-location or "multiplex" proteins should not be ignored because they usually posses some unique biological functions worthy of our special notice. By introducing the "multi-labeled learning" and "accumulation-layer scale", a new predictor, called iLoc-Euk, has been developed that can be used to deal with the systems containing both singleplex and multiplex proteins. As a demonstration, the jackknife cross-validation was performed with iLoc-Euk on a benchmark dataset of eukaryotic proteins classified into the following 22 location sites: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centriole, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole, where none of proteins included has ≥25% pairwise sequence identity to any other in a same subset. The overall success rate thus obtained by iLoc-Euk was 79%, which is significantly higher than that by any of the existing predictors that also have the capacity to deal with such a complicated and stringent system. As a user-friendly web-server, iLoc-Euk is freely accessible to the public at the web-site http://icpr.jci.edu.cn/bioinfo/iLoc-Euk. It is anticipated that iLoc-Euk may become a useful bioinformatics tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development Also, its novel approach will further stimulate the development of predicting other protein attributes.

摘要

预测蛋白质亚细胞定位是一个重要而困难的问题,特别是当查询蛋白质可能具有多重特征时,即同时存在于两个或多个不同的亚细胞位置或在它们之间移动。大多数现有的蛋白质亚细胞定位预测器只能用于处理单定位或“单plex”蛋白质。实际上,不应忽略多定位或“multiplex”蛋白质,因为它们通常具有一些值得我们特别注意的独特生物学功能。通过引入“多标签学习”和“积累层规模”,开发了一种新的预测器,称为 iLoc-Euk,可用于处理包含单plex 和 multiplex 蛋白质的系统。作为演示,使用 iLoc-Euk 在真核蛋白质的基准数据集上进行了 jackknife 交叉验证,该数据集分为以下 22 个位置:(1)顶体,(2)细胞膜,(3)细胞壁,(4)中心粒,(5)叶绿体,(6)蓝藻,(7)细胞质,(8)细胞骨架,(9)内质网,(10)内体,(11)细胞外,(12)高尔基体,(13)氢体,(14)溶酶体,(15)黑色素体,(16)微粒体(17)线粒体,(18)核,(19)过氧化物酶体,(20)纺锤体极体,(21)突触,和(22)液泡,其中没有一个蛋白质与同一子集中的任何其他蛋白质具有≥25%的成对序列同一性。iLoc-Euk 获得的总体成功率为 79%,明显高于任何其他具有处理如此复杂和严格系统能力的现有预测器。作为一个用户友好的网络服务器,iLoc-Euk 可在网站 http://icpr.jci.edu.cn/bioinfo/iLoc-Euk 上免费供公众使用。预计 iLoc-Euk 将成为分子细胞生物学、蛋白质组学、系统生物学和药物开发的有用生物信息学工具,其新颖的方法将进一步激发预测其他蛋白质属性的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8194/3068162/ce22244d5a81/pone.0018258.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验